Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Neutron reflectometry to investigate the delivery of lipids and DNA to interfaces (Review)

Article metrics

Abstract

The application of scattering methods in the study of biological and biomedical problems is a field of research that is currently experiencing fast growth. In particular, neutron reflectometry (NR) is a technique that is becoming progressively more widespread, as indicated by the current commissioning of several new reflectometers worldwide. NR is valuable for the characterization of biomolecules at interfaces due to its capability to provide quantitative structural and compositional information on relevant molecular length scales. Recent years have seen an increasing number of applications of NR to problems related to drug and gene delivery. We start our review by summarizing the experimental methodology of the technique with reference to the description of biological liquid interfaces. Various methods for the interpretation of data are then discussed, including a new approach based on the lattice mean-field theory to help characterize stimulus-responsive surfaces relevant to drug delivery function. Recent progress in the subject area is reviewed in terms of NR studies relevant to the delivery of lipids and DNA to surfaces. Lastly, we discuss two case studies to exemplify practical features of NR that are exploited in combination with complementary techniques. The first case concerns the interactions of lipid-based cubic phase nanoparticles with model membranes a drug delivery application, and the second case concerns DNA compaction at surfaces and in the bulk solution a gene delivery application.

References

  1. 1

    J. Penfold and R. K. Thomas, J. Phys.: Condens. Matter 2, 1369 (1990).

  2. 2

    J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002).

  3. 3

    J. E. Bradley, E. M. Lee, R. K. Thomas, A. J. Willatt, J. Penfold, R. C. Ward, D. P. Gregory, and W. Waschkowski, Langmuir 4, 821 (1988).

  4. 4

    T. L. Crowley, E. M. Lee, E. A. Simister, and R. K. Thomas, Physica B Amsterdam 173, 143 (1991).

  5. 5

    J. R. Lu, T. J. Su, R. K. Thomas, J. Penfold, and R. W. Richards, Polymer 37, 109 (1996).

  6. 6

    H. Xu, S. Perumal, X. Zhao, N. Du, X.-Y. Liu, Z. Jia, and J. R. Lu, Biophys. J. 94, 4405 (2008).

  7. 7

    V. F. Sears, Neutron News 3, 29 (1992).

  8. 8

    C. F. Majkrzak, S. K. Satija, N. F. Berk, S. K. Krueger, J. A. Borchers, J. A. Dura, R. Ivkov, and K. ODonovan, Neutron News 12, 25 (2001).

  9. 9

    R. Cubitt and G. Fragneto, Appl. Phys. A: Mater. Sci. Process. 74, S329 (2002).

  10. 10

    J. Lekner, Theory of Reflection of Electromagnetic and Particle Waves (Martinus Nijhoff, Dordrecht, 1987).

  11. 11

    L. G. Parratt, Phys. Rev. 95, 359 (1954).

  12. 12

    F. Abelès, Ann. Phys. (Paris) 5, 596 (1950).

  13. 13

    M. Born and E. Wolf, Prinicples of Optics, 6th ed. (Cambridge University Press Cambridge, England, 1980).

  14. 14

    D. J. Lyttle, J. R. Lu, T. J. Su, R. K. Thomas, and J. Penfold, Langmuir 11, 1001 (1995).

  15. 15

    J. R. Lu, R. K. Thomas, and J. Penfold, Adv. Colloid Interface Sci. 84, 143 (2000).

  16. 16

    G. Fragneto, J. R. Lu, D. C. McDermott, R. K. Thomas, A. R. Rennie, P. D. Gallagher, and S. K. Satija, Langmuir 12, 477 (1996).

  17. 17

    S. Krueger, J. F. Ankner, S. K. Satija, C. F. Majkrzak, D. Gurley, and M. Colombini, Langmuir 11, 3218 (1995).

  18. 18

    Neutron Scattering in Biology, edited by J. Fitter, T. Gutberlet, and J. Katsaras (Springer, Berlin, 2006).

  19. 19

    R. K. Thomas, Annu. Rev. Phys. Chem. 55, 391 (2004).

  20. 20

    T. Nylander, F. Tiberg, T. S. Su, J. R. Lu, and R. K. Thomas, Biomacromolecules 2, 278 (2001).

  21. 21

    J. R. Lu, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 95, 3 (1999).

  22. 22

    M. Cárdenas, T. Arnebrant, A. Rennie, G. Fragneto, R. K. Thomas, and L. Lindh, Biomacromolecules 8, 65 (2007).

  23. 23

    M. Cárdenas and T. Nylander, in Interaction of DNA with Surfactants and Polymers, edited by B. Lindman and R. Dias (Wiley, Oxford, 2008), pp. 291–316.

  24. 24

    M. Cárdenas, C. A. Dreiss, T. Nylander, C. P. Chan, T. Cosgrove, and B. Lindman, Langmuir 21, 3578 (2005).

  25. 25

    P. Vandoolaeghe, A. R. Rennie, R. A. Campbell, R. K. Thomas, F. Höök, G. Fragneto, F. Tiberg, and T. Nylander, Soft Matter 4, 2267 (2008).

  26. 26

    H. P. Vacklin, F. Tiberg, and R. K. Thomas, Biochim. Biophys. Acta 1668, 17 (2005).

  27. 27

    H. P. Vacklin, F. Tiberg, G. Fragneto, and R. K. Thomas, Langmuir 21, 2827 (2005).

  28. 28

    A. Yaseen, J. R. Lu, J. R. P. Webster, and J. Penfold, Biophys. Chem. 117, 263 (2005).

  29. 29

    A. P. Le Brun, S. A. Holt, D. S. Shah, C. F. Majkrzak, and J. H. Lakey, Eur. Biophys. J. 37, 639 (2008).

  30. 30

    L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

  31. 31

    See http://www.hmi.de/bensc/instrumentation/instrumente/v6/refl/parratt_en.htm for a description of the computer programs and access to the software.

  32. 32

    See http://material.fysik.uu.se/Group_members/adrian/reflect.htm Analysis for a description of the computer programs and access to the software.

  33. 33

    A. Nelson, J. Appl. Crystallogr. 39, 273 (2006).

  34. 34

    M. Björck and G. Andersson, J. Appl. Crystallogr. 40, 1174 (2007).

  35. 35

    See http://material.fysik.uu.se/Group_members/adrian/cprof.htm for an account of the specific computer programs.

  36. 36

    See http://material.fysik.uu.se/Group_members/adrian/refprog.htm for an account of the specific computer programs.

  37. 37

    J. Penfold, D. S. Sivia, E. Staples, I. Tucker, and R. K. Thomas, Langmuir 20, 2265 (2004).

  38. 38

    T. P. Russell, Physica B Amsterdam 221, 267 (1996).

  39. 39

    J. Zhang, T. Nylander, R. A. Campbell, A. R. Rennie, S. Zauscher, and P. Linse, Soft Matter 4, 500 (2008).

  40. 40

    J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem. 83, 1619 (1979).

  41. 41

    G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, and B. Vincent, Polymers at Interfaces (Chapman & Hall, London, 1993).

  42. 42

    P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).

  43. 43

    G. Karlström, J. Phys. Chem. 89, 4962 (1985).

  44. 44

    P. Linse and M. Björling, Macromolecules 24, 6700 (1991).

  45. 45

    P. Linse and T. A. Hatton, Langmuir 13, 4066 (1997).

  46. 46

    J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, 1983).

  47. 47

    M. Landgren and B. Jonsson, J. Phys. Chem. 97, 1656 (1993).

  48. 48

    R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

  49. 49

    J. A. Defeijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

  50. 50

    M. Rodahl, F. Hook, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, Faraday Discuss. 107, 229 (1997).

  51. 51

    F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and E. H. Elwing, Anal. Chem. 73, 5796 (2001).

  52. 52

    J. S. Pedersen, Adv. Colloid Interface Sci. 70, 171 (1997).

  53. 53

    A. D. Bangham and R. W. Horne, J. Mol. Biol. 8, 660 (1964).

  54. 54

    G. Gregoriadis, C. P. Swain, E. J. Wills, and A. S. Tavill, Lancet 303, 1313 (1974).

  55. 55

    P. Couvreur and C. Vauthier, Pharm. Res. 23, 1417 (2006).

  56. 56

    S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji, J. Controlled Release 126, 187 (2008).

  57. 57

    M. C. Woodle and D. D. Lasic, Biochim. Biophys. Acta 1113, 171 (1992).

  58. 58

    D. Papahadjopoulos et al., Proc. Natl. Acad. Sci. U.S.A. 88, 11460 (1991).

  59. 59

    S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes, J. Colloid Interface Sci. 142, 149 (1991).

  60. 60

    L. M. Ickenstein, M. C. Arfvidsson, D. Needham, L. D. Mayera, and K. Edwards, Biochim. Biophys. Acta 1614, 135 (2003).

  61. 61

    J. S. Patton and M. C. Carey, Science 204, 145 (1979).

  62. 62

    K. Larsson, J. Phys. Chem. 93, 7304 (1989).

  63. 63

    W. Buchheim and K. Larsson, J. Colloid Interface Sci. 117, 582 (1987).

  64. 64

    M. Monduzzi, H. Ljusberg-Wahren, and K. Larsson, Langmuir 16, 7355 (2000).

  65. 65

    K. Larsson, Curr. Opin. Colloid Interface Sci. 5, 64 (2000).

  66. 66

    T. Landh, J. Phys. Chem. 98, 8453 (1994).

  67. 67

    J. Gustafsson, H. Ljusberg-Wahren, M. Almgren, and K. Larsson, Langmuir 12, 4611 (1996).

  68. 68

    J. Barauskas, M. Johnsson, F. Johnson, and F. Tiberg, Langmuir 21, 2569 (2005).

  69. 69

    J. Barauskas, M. Johnsson, and F. Tiberg, Nano Lett. 5, 1615 (2005).

  70. 70

    Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals, edited by N. Garti (Woodhead, Cambridge, 2008).

  71. 71

    E. Acosta, in Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals, edited by N. Garti (Woodhead, Cambridge, 2008), pp.53–106.

  72. 72

    T. Niidome and L. Huang, Gene Ther. 9, 1647 (2002).

  73. 73

    K. K. Ewert, C. E. Samuel, and C. R. Safinya, in DNA Interactions with Polymers and Surfactants, edited by R. Dias and B. Lindman (Wiley, Hoboken, NJ, 2008), pp. 377–404.

  74. 74

    E. Sackmann, Science 271, 43 (1996).

  75. 75

    R. P. Richter, R. Berat, and A. R. Brisson, Langmuir 22, 3497 (2006).

  76. 76

    F. Tiberg, I. Harwigsson, and M. Malmsten, Eur. Biophys. J. 29, 196 (2000).

  77. 77

    T. Gutberlet, R. Steitz, G. Fragneto, and B. Klösgen, J. Phys.: Condens. Matter 16, S2469 (2004).

  78. 78

    D. Stroumpoulis, A. Parra, and M. Tirrell, AIChE J. 52, 2931 (2006).

  79. 79

    C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

  80. 80

    H. P. Wacklin and R. K. Thomas, Langmuir 23, 7644 (2007).

  81. 81

    L. M. Grant and F. Tiberg, Biophys. J. 82, 1373 (2002).

  82. 82

    J. Y. Wong, J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith, Biophys. J. 77, 1445 (1999).

  83. 83

    U. A. Perez-Salas, K. M. Faucher, C. F. Majkrzak, N. F. Berk, S. Krueger, and E. L. Chaikof, Langmuir 19, 7688 (2003).

  84. 84

    M. Tanaka and E. Sackmann, Nature London 437, 656 (2005).

  85. 85

    G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz, and M. Lösche, J. Phys. Chem. B 110, 10213 (2006).

  86. 86

    D. J. McGillivray, G. Valincius, D. J. Vanderah, W. Febo-Ayala, J. T. Woodward, F. Heinrich, J. J. Kasianowicz, and M. Lösche, BioInterphases 2, 21 (2007).

  87. 87

    B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature London 387, 580 (1997).

  88. 88

    D. A. Doshi, A. M. Dattelbaum, E. B. Watkins, C. J. Brinker, B. I. Swanson, A. P. Shreve, A. N. Parikh, and J. Majewski, Langmuir 21, 2865 (2005).

  89. 89

    A. V. Hughes, J. R. Howse, A. Dabkowska, R. A. L. Jones, M. J. Lawrence, and S. J. Roser, Langmuir 24, 1989 (2008).

  90. 90

    H. Haas, R. Steitz, A. Fasano, G. M. Liuzzi, E. Polverini, P. Cavatorta, and P. Riccio, Langmuir 23, 8491 (2007).

  91. 91

    G. Fragneto and M. Rheinstädter, C. R. Phys. 8, 865 (2007).

  92. 92

    C. Li, D. Constantin, and T. Salditt, J. Phys.: Condens. Matter 16, S2439 (2004).

  93. 93

    N. Kucerka, M.-P. Nieh, J. Pencer, T. Harroun, and J. Katsaras, Curr. Opin. Colloid Interface Sci. 12, 17 (2007).

  94. 94

    P. Callow, G. Fragneto, R. Cubitt, D. J. Barlow, M. J. Lawrence, and P. Timmins, Langmuir 21, 7912 (2005).

  95. 95

    G. Wagner, A. Bancaud, J.-P. Quivy, C. Clapier, G. Almouzni, and J.-L. Viovy, Biophys. J. 89, 3647 (2005).

  96. 96

    K. Matsubara, N. Sano, T. Umehara, and M. Horikoshi, Genes Cells 12, 13 (2007).

  97. 97

    A. Bertin, A. Leforestier, D. Durand, and F. Livolant, Biochemistry 43, 4773 (2004).

  98. 98

    S. A. Gani, D. C. Mukherjee, and D. K. Chattoraj, Langmuir 15, 7130 (1999).

  99. 99

    A. Elaissari, P. Cros, C. Pichot, V. Laurent, and B. Mandrand, Colloids Surf., A 83, 25 (1994).

  100. 100

    V. Balladur, A. Theretz, and B. Mandrand, J. Colloid Interface Sci. 194, 408 (1997).

  101. 101

    R. R. Kunze and R. R. Netz, Phys. Rev. Lett. 85, 4389 (2000).

  102. 102

    I. M. Verma and N. Somia, Nature London 389, 239 (1997).

  103. 103

    N. S. Templeton and D. D. Lasic, Mol. Biotechnol. 11, 175 (1999).

  104. 104

    D. K. Chattoraj, P. Chowrashi, and K. Chakravarti, Biopolymers 5, 173 (1967).

  105. 105

    K. Eskilsson, C. Leal, B. Lindman, M. Miguel, and T. Nylander, Langmuir 17, 1666 (2001).

  106. 106

    M. Cárdenas, K. Schillen, T. Nylander, J. Jansson, and B. Lindman, Phys. Chem. Chem. Phys. 6, 1603 (2004).

  107. 107

    M. Cárdenas, A. Braem, T. Nylander, and B. Lindman, Langmuir 19, 7712 (2003).

  108. 108

    L. Stryer, Biochemistry (Freeman, New York, 1995).

  109. 109

    A. Elaissari, Y. Chevalier, F. Ganachaud, T. Delair, and C. Pichot, Langmuir 16, 1261 (2000).

  110. 110

    D. Zanchet, C. M. Michel, W. J. Parak, D. Gerion, and A. P. Alivisatos, Nano Lett. 1, 32 (2001).

  111. 111

    S. J. Park, A. A. Lazarides, J. J. Storhoff, L. Pesce, and C. A. Mirkin, J. Phys. Chem. B 108, 12375 (2004).

  112. 112

    L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Käll, and F. Höök, Langmuir 19, 10414 (2003).

  113. 113

    S. Moses et al., Langmuir 20, 11134 (2004).

  114. 114

    R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, J. Am. Chem. Soc. 120, 9787 (1998).

  115. 115

    C.-Y. Lee, P. Gong, G. M. Harbers, D. W. Grainger, D. G. Castner, and L. J. Gamble, Anal. Chem. 78, 3316 (2006).

  116. 116

    P. Gong, C.-Y. Lee, L. J. Gamble, D. G. Castner, and D. W. Grainger, Anal. Chem. 78, 3326 (2006).

  117. 117

    L. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, R. L. Letsinger, R. Elghanian, and G. Viswanadham, Anal. Chem. 72, 5535 (2000).

  118. 118

    S. M. Melnikov, V. G. Sergeyev, and K. Yoshikawa, J. Am. Chem. Soc. 117, 9951 (1995).

  119. 119

    R. Dias, S. Melnikov, B. Lindman, and M. G. Miguel, Langmuir 16, 9577 (2000).

  120. 120

    M. Cárdenas, T. Nylander, R. K. Thomas, and B. Lindman, Langmuir 21, 6495 (2005).

  121. 121

    J. Zhang, D. J. F. Taylor, P. X. Li, R. K. Thomas, J. B. Wang, and J. Penfold, Langmuir 24, 1863 (2008).

  122. 122

    J.-C. Wu, T.-L. Lin, U.-S. Jeng, and N. Torikai, Physica B Amsterdam 385–386, 838 (2006).

  123. 123

    J.-C. Wu, T.-L. Lin, U.-S. Jeng, H.-Y. Lee, and T. Gutberlet, Physica B Amsterdam 385–386, 841 (2006).

  124. 124

    X. Chen, J. Wang, N. Shen, Y. Luo, L. Li, M. Liu, and R. K. Thomas, Langmuir 18, 6222 (2002).

  125. 125

    J. Generosi, C. Castellano, D. Pozzi, A. C. Castellanon, R. Felici, F. Natali, and G. Fragneto, J. Appl. Phys. 96, 6839 (2004).

  126. 126

    P. T. Spicer, Curr. Opin. Colloid Interface Sci. 10, 274 (2005).

  127. 127

    L. Sagalowicz, R. Mezzenga, and M. E. Leser, Curr. Opin. Colloid Interface Sci. 11, 224 (2006).

  128. 128

    P. Vandoolaeghe, F. Tiberg, and T. Nylander, Langmuir 22, 9169 (2006).

  129. 129

    M. Cárdenas, J. Campos-Teran, T. Nylander, and B. Lindman, Langmuir 20, 8597 (2004).

  130. 130

    R. Bruinsma, Eur. Phys. J. B 4, 75 (1998).

  131. 131

    R. Chatterjee and D. K. Chattoraj, Biopolymers 18, 147 (1979).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article