Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents

Abstract

Three different approaches to the immobilization of proteins at surfaces have been compared. All rely on the creation of surface groups that bind primary amines on lysine residues. Carboxylic acid terminated self-assembled monolayers (SAMs) have been activated using a water soluble carbodiimide to yield an active ester functionalized surface and with trifluoroacetic anhydride to yield a surface anhydride, and amine terminated SAMs have been activated using glutaraldehyde. Although the degree of surface derivatization by n-alkylamines was greater using the carbodiimide and anhydride methods under anhydrous conditions, the glutaraldehyde activation of amine terminated SAMs yielded significantly greater attachment of streptavidin than is achieved using either of the other methods. This is attributed to the susceptibility to hydrolysis of the active species formed by activation of the carboxylic acid terminated monolayers. Patterned protein structures may be formed by using both glutaraldehyde activation of amine terminated thiols and carbodiimide activation of carboxylic acid terminated thiols, in conjunction with selective photo-oxidation of oligo(ethylene glycol) terminated SAMs.

References

  1. 1

    J. J. Davis, D. A. Morgan, C. L. Wrathmell, D. N. Axford, J. Zhao, and N. Wang, J. Mater. Chem. 15, 2160 (2005).

    Article  CAS  Google Scholar 

  2. 2

    A. S. G. Curtis and J. V. Forrester, J. Cell. Sci. 71, 17 (1986).

    Google Scholar 

  3. 3

    A. S. G. Curtis, J. V. Forrester, and P. Clark, J. Cell. Sci. 86, 9 (1986).

    CAS  Google Scholar 

  4. 4

    A. S. G. Curtis and H. McMurray, J. Cell. Sci. 86, 25 (1986).

    CAS  Google Scholar 

  5. 5

    G. P. Lopez, H. A. Biebuyck, R. Haerter, A. Kumar, and G. M. Whitesides, J. Am. Chem. Soc. 115, 10774 (1993).

    Article  CAS  Google Scholar 

  6. 6

    R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. C. Wang, G. M. Whitesides, and D. E. Ingber, Science 264, 696 (1994).

    Article  CAS  Google Scholar 

  7. 7

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

    Article  CAS  Google Scholar 

  8. 8

    D. M. Brunette, Exp. Cell Res. 164, 11 (1986).

    Article  CAS  Google Scholar 

  9. 9

    B. Chehroudi, T. R. L. Gould, and D. M. Brunette, J. Biomed. Mater. Res. 24, 1203 (1990).

    Article  CAS  Google Scholar 

  10. 10

    B. Chehroudi, T. R. L. Gould, and D. M. Brunette, J. Biomed. Mater. Res. 25, 387 (1991).

    Article  CAS  Google Scholar 

  11. 11

    P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, J. Cell. Sci. 99, 73 (1991).

    Google Scholar 

  12. 12

    C. A. Scotchford, E. Cooper, S. Downes, and G. J. Leggett, J. Biomed. Mater. Res. 41, 431 (1998).

    Article  CAS  Google Scholar 

  13. 13

    C. H. Thomas, J.-B. Lhoest, D. G. Castner, C. D. MacFarland, and K. E. Healy, J. Biomech. Eng. 121, 40 (1999).

    Article  CAS  Google Scholar 

  14. 14

    S. Huang and D. E. Ingber, Exp. Cell Res. 261, 91 (2000).

    Article  CAS  Google Scholar 

  15. 15

    C. H. Thomas, J. H. Collier, C. S. Sfeir, and K. E. Healy, Proc. Natl. Acad. Sci. U.S.A. 99, 1972 (2002).

    Article  CAS  Google Scholar 

  16. 16

    E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, and J. P. Spatz, Biophys. J. 92, 2964 (2007).

    Article  CAS  Google Scholar 

  17. 17

    A. E. Calvacanti-Adam, A. Micoulet, J. Blümmel, J. Auernheimer, H. Kessler, and J. P. Spatz, Eur. J. Cell Biol. 85, 219 (2006).

    Article  Google Scholar 

  18. 18

    K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, Science 295, 1702 (2002).

    Article  CAS  Google Scholar 

  19. 19

    K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).

    Article  CAS  Google Scholar 

  20. 20

    C. Pale-Grosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991).

    Article  CAS  Google Scholar 

  21. 21

    H. Ma, D. Li, X. Sheng, B. Zhao, and A. Chilkoti, Langmuir 22, 3751 (2006).

    Article  CAS  Google Scholar 

  22. 22

    H. Ma, M. Textor, R. L. Clark, and A. Chilkoti, BioInterphases 1, 35 (2006).

    Article  CAS  Google Scholar 

  23. 23

    H. Ma, M. Wells, T. P. Beebe, Jr., and A. Chilkoti, Adv. Funct. Mater. 16, 640 (2006).

    Article  CAS  Google Scholar 

  24. 24

    G. P. López, B. D. Ratner, C. Tidwell, C. Haycox, R. Rapoza, and T. Horbett, J. Biomed. Mater. Res. 26, 415 (1992).

    Article  Google Scholar 

  25. 25

    M. Shen, M. Wagner, D. Castner, B. Ratner, and T. Horbett, Langmuir 19, 1692 (2003).

    Article  CAS  Google Scholar 

  26. 26

    H. Wang, D. G. Castner, B. D. Ratner, and S. Jiang, Langmuir 20, 1877 (2004).

    Article  CAS  Google Scholar 

  27. 27

    L. Yan, C. Marzolin, A. Terfort, and G. M. Whitesides, Langmuir 13, 6704 (1997).

    Article  CAS  Google Scholar 

  28. 28

    N. Patel, M. C. Davies, M. Hartshorne, R. J. Heaton, C. J. Roberts, S. J. Tendler, and P. M. Williams, Langmuir 13, 6485 (1997).

    Article  CAS  Google Scholar 

  29. 29

    S. Sun, M. Montague, K. Critchley, M.-S. Chen, W. J. Dressick, S. D. Evans, and G. J. Leggett, Nano Lett. 6, 29 (2006).

    Article  Google Scholar 

  30. 30

    N. P. Reynolds et al., J. Am. Chem. Soc. 129, 14625 (2007).

    Article  CAS  Google Scholar 

  31. 31

    F. Cheng, L. J. Gamble, D. W. Grainger, and D. G. Castner, Anal. Chem. 79, 8781 (2007).

    Article  CAS  Google Scholar 

  32. 32

    G. J. Leggett, Chem. Soc. Rev. 35, 1150 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ducker, R.E., Montague, M.T. & Leggett, G.J. A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents. Biointerphases 3, 59–65 (2008). https://doi.org/10.1116/1.2976451

Download citation