Skip to main content

Journal for Biophysical Chemistry

Membrane composition-mediated protein-protein interactions

Abstract

The authors investigate membrane composition-mediated interactions between proteins adsorbed onto a two-component lipid bilayer close to critical demixing using coarse-grained molecular dynamics simulations and a phenomenological Ginzburg-Landau theory. The simulations consist of three-bead lipids and platelike proteins, which adsorb onto the membrane by binding preferentially to one of the two lipid species. The composition profile around one protein and the pair correlation function between two proteins are measured and compared to the analytical predictions. The theoretical framework is applicable to any scalar field embedded in the membrane, and although in this work the authors treat flat membranes, the methodology extends readily to curved geometries. Neglecting fluctuations, both lipid composition profile and induced protein pair potential are predicted to follow a zeroth order modified Bessel function of the second kind with the same characteristic decay length. These predictions are consistent with our molecular dynamics simulations, except that the interaction range is found to be larger than the single profile correlation length.

References

  1. S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).

    Article  CAS  Google Scholar 

  2. D. A. Brown and E. London, Biochem. Biophys. Res. Commun. 240, 1 (1997).

    Article  CAS  Google Scholar 

  3. K. Simons and E. Ikonen, Nature (London) 387, 569 (1997).

    Article  CAS  Google Scholar 

  4. D. A. Brown and E. London, J. Membr. Biol. 164, 103 (1998).

    Article  CAS  Google Scholar 

  5. D. A. Brown and E. London, Annu. Rev. Cell Dev. Biol. 14, 111 (1998).

    Article  CAS  Google Scholar 

  6. D. A. Brown and E. London, J. Biol. Chem. 275, 17221 (2000).

    Article  CAS  Google Scholar 

  7. S. L. Veatch and S. L. Keller, Phys. Rev. Lett. 89, 268101 (2002).

    Article  Google Scholar 

  8. S. L. Veatch and S. L. Keller, Biophys. J. 85, 3074 (2003).

    Article  CAS  Google Scholar 

  9. T. Baumgart, S. T. Hess, and W. W. Webb, Nature (London) 425, 821 (2003).

    Article  CAS  Google Scholar 

  10. S. L. Veatch, I. V. Polozov, K. Gawrisch, and S. L. Keller, Biophys. J. 86, 2910 (2004).

    Article  CAS  Google Scholar 

  11. S. L. Veatch and S. L. Keller, Phys. Rev. Lett. 94, 148101 (2005).

    Article  Google Scholar 

  12. G. W. Feigenson, Annu. Rev. Biophys. Biomol. Struct. 36, 63 (2007).

    Article  CAS  Google Scholar 

  13. T. Baumgart, A. T. Hammond, P. Sengupta, S. T. Hess, D. A. Holowka, B. A. Baird, and W. W. Webb, Proc. Natl. Acad. Sci. U.S.A. 104, 3165 (2007).

    Article  CAS  Google Scholar 

  14. J. Fan, M. Sammalkorpi, and M. Haataja, Phys. Rev. Lett. 100, 178102 (2008).

    Article  Google Scholar 

  15. J. Gomez, F. Sagues, and R. Reigada, Phys. Rev. E 77, 021907 (2008).

    Article  Google Scholar 

  16. A. Kusumi et al., Annu. Rev. Biophys. Biomol. Struct. 34, 351 (2005).

    Article  CAS  Google Scholar 

  17. O. G. Mouritsen and M. Bloom, Biophys. J. 46, 141 (1984).

    Article  CAS  Google Scholar 

  18. D. R. Fattal and A. Ben Shaul, Biophys. J. 65, 1795 (1993).

    Article  CAS  Google Scholar 

  19. H. Aranda-Espinoza, A. Berman, N. Dan, P. Pincus, and S. Safran, Biophys. J. 71, 648 (1996).

    Article  CAS  Google Scholar 

  20. C. Nielsen, M. Goulian, and O. S. Andersen, Biophys. J. 74, 1966 (1998).

    Article  CAS  Google Scholar 

  21. S. May and A. Ben Shaul, Biophys. J. 76, 751 (1999).

    Article  CAS  Google Scholar 

  22. S. May and A. Ben Shaul, Phys. Chem. Chem. Phys. 2, 4494 (2000).

    Article  CAS  Google Scholar 

  23. T. Gil and J. H. Ipsen, Phys. Rev. E 55, 1713 (1997).

    Article  CAS  Google Scholar 

  24. T. Gil, M. C. Sabra, J. H. Ipsen, and O. G. Mouritsen, Biophys. J. 73, 1728 (1997).

    Article  CAS  Google Scholar 

  25. T. Gil, J. H. Ipsen, and C. F. Tejero, Phys. Rev. E 57, 3123 (1998).

    Article  CAS  Google Scholar 

  26. T. Gil, J. H. Ipsen, O. G. Mouritsen, M. C. Sabra, M. M. Sperotto, and M. J. Zuckermann, Biochim. Biophys. Acta 1376, 245 (1998).

    CAS  Google Scholar 

  27. S. May, D. Harries, and A. Ben Shaul, Biophys. J. 79, 1747 (2000).

    Article  CAS  Google Scholar 

  28. S. May, D. Harries, and A. Ben Shaul, Phys. Rev. Lett. 89, 268102 (2002).

    Article  Google Scholar 

  29. E. C. Mbamala, A. Ben-Shaul, and S. May, Biophys. J. 88, 1702 (2004).

    Article  Google Scholar 

  30. M. Goulian, R. Bruinsma, and P. Pincus, Europhys. Lett. 22, 145 (1993).

    Article  CAS  Google Scholar 

  31. M. Goulian, R. Bruinsma, and P. Pincus, Europhys. Lett. 23, 155 (1993).

    Article  Google Scholar 

  32. J.-M. Park and T. C. Lubensky, J. Phys. I France 6, 1217 (1996).

    Article  CAS  Google Scholar 

  33. J. B. Fournier and P. G. Dommersnes, Europhys. Lett. 39, 681 (1997).

    Article  CAS  Google Scholar 

  34. T. Weikl, M. Kozlov, and W. Helfrich, Phys. Rev. E 57, 6988 (1998).

    Article  CAS  Google Scholar 

  35. P. G. Dommersnes, J. B. Fournier, and P. Galatola, Europhys. Lett. 42, 233 (1998).

    Article  CAS  Google Scholar 

  36. P. Dommersnes and J.-B. Fournier, Eur. Phys. J. B 12, 9 (1999).

    Article  CAS  Google Scholar 

  37. M. S. Turner and P. Sens, Biophys. J. 76, 564 (1999).

    Article  CAS  Google Scholar 

  38. V. Marchenko and C. Misbah, Eur. Phys. J. E 8, 477 (2002).

    CAS  Google Scholar 

  39. J.-B. Fournier, P. Dommersnes, and P. Galatola, C. R. Biologies 326, 467 (2003).

    Article  CAS  Google Scholar 

  40. D. Bartolo and J. Fournier, Eur. Phys. J. E 11, 141 (2003).

    Article  CAS  Google Scholar 

  41. A. Evans, M. Turner, and P. Sens, Phys. Rev. E 67, 041907 (2003).

    Article  CAS  Google Scholar 

  42. T. Weikl, Eur. Phys. J. E 12, 265 (2003).

    Article  CAS  Google Scholar 

  43. P. Sens and M. Turner, Biophys. J. 86, 2049 (2004).

    Article  CAS  Google Scholar 

  44. M. M. Müller, M. Deserno, and J. Guven, Europhys. Lett. 69, 482 (2005).

    Article  Google Scholar 

  45. M. Müller, M. Deserno, and J. Guven, Phys. Rev. E 72, 061407 (2005).

    Article  Google Scholar 

  46. B. Reynwar, G. Illya, V. Harmandaris, M. Mller, K. Kremer, and M. Deserno, Nature (London) 447, 461 (2007).

    Article  CAS  Google Scholar 

  47. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. B51, 793 (1948).

    Google Scholar 

  48. M. E. Fisher, P. G. de Gennes, and C. R. Seances, C. R. Seances Acad. Sci., Ser. B 287, 207 (1978).

    CAS  Google Scholar 

  49. M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994).

    Google Scholar 

  50. M. Krech, Phys. Rev. E 56, 1642 (1997).

    Article  CAS  Google Scholar 

  51. M. Krech, J. Phys.: Condens. Matter 11, R391 (1999).

    Article  CAS  Google Scholar 

  52. C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger, Nature (London) 451, 172 (2008).

    Article  CAS  Google Scholar 

  53. R. R. Netz, Phys. Rev. Lett. 76, 3646 (1996).

    Article  CAS  Google Scholar 

  54. F. Jähnig, Biophys. J. 36, 329 (1981).

    Article  Google Scholar 

  55. R. Golestanian, M. Goulian, and M. Kardar, Europhys. Lett. 33, 241 (1996).

    Article  CAS  Google Scholar 

  56. P. G. Dommersnes and J. B. Fournier, Europhys. Lett. 46, 256 (1999).

    Article  CAS  Google Scholar 

  57. T. R. Weikl, Europhys. Lett. 54, 547 (2001).

    Article  CAS  Google Scholar 

  58. W. Helfrich and T. R. Weikl, Eur. Phys. J. E 5, 423 (2001).

    Article  CAS  Google Scholar 

  59. T. Taniguchi, Phys. Rev. Lett. 76, 4444 (1996).

    Article  CAS  Google Scholar 

  60. P. B. S. Kumar and M. Rao, Phys. Rev. Lett. 80, 2489 (1998).

    Article  CAS  Google Scholar 

  61. Y. Jiang, T. Lookman, and A. Saxena, Phys. Rev. E 61, R57 (2000).

    Article  CAS  Google Scholar 

  62. J. L. McWhirter, G. Ayton, and G. A. Voth, Biophys. J. 87, 3242 (2004).

    Article  CAS  Google Scholar 

  63. G. S. Ayton, J. L. McWhirter, P. McMurtry, and G. A. Voth, Biophys. J. 88, 3855 (2005).

    Article  CAS  Google Scholar 

  64. Q. Shi and G. A. Voth, Biophys. J. 89, 2385 (2005).

    Article  CAS  Google Scholar 

  65. A. Hanke, F. Schlesener, E. Eisenriegler, and S. Dietrich, Phys. Rev. Lett. 81, 1885 (1998).

    Article  CAS  Google Scholar 

  66. F. Schlesener, A. Hanke, and S. Dietrich, J. Stat. Phys. 110, 981 (2003).

    Article  CAS  Google Scholar 

  67. L. S. Brown, Ann. Phys. 126, 135 (1980).

    Article  CAS  Google Scholar 

  68. E. Eisenriegler and M. Stapper, Phys. Rev. B 50, 10009 (1994).

    Article  CAS  Google Scholar 

  69. J.-B. Fournier and C. Barbetta, Phys. Rev. Lett. 100, 078103 (2008).

    Article  Google Scholar 

  70. S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Perseus, Cambridge, 1994).

    Google Scholar 

  71. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (DoverMineola, NY, 2002).

    Google Scholar 

  72. J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena (Clarendon, Oxford, 1995).

    Google Scholar 

  73. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Butterworth, Washington, DC/Heinemann, Oxford, 1999).

    Google Scholar 

  74. R. Capovilla and J. Guven, J. Phys. A 35, 6233 (2002).

    Article  CAS  Google Scholar 

  75. R. Capovilla and J. Guven, J. Phys.: Condens. Matter 16, S2187 (2004).

    Article  CAS  Google Scholar 

  76. J. Guven, J. Phys. A 37, L313 (2004).

    Article  Google Scholar 

  77. M. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, NJ, 1976).

    Google Scholar 

  78. E. Kreyszig, Differential Geometry (Dover, New York, 1991).

    Google Scholar 

  79. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).

    Google Scholar 

  80. M. M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288 (1949).

    Article  Google Scholar 

  81. H.-J. Limbach, A. Arnold, B. A. Mann, and C. Holm, Comput. Phys. Commun. 174, 704 (2006).

    Article  CAS  Google Scholar 

  82. I. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72, 011506 (2005).

    Article  Google Scholar 

  83. M. Müller, K. Katsov, and M. Schick, Phys. Rep. 434, 113 (2006).

    Article  Google Scholar 

  84. M. Venturoli, M. M. Sperotto, M. Kranenburg, and B. Smit, Phys. Rep. 437, 1 (2006).

    Article  CAS  Google Scholar 

  85. G. Brannigan, L. C. L. Lin, and F. L. H. Brown, Eur. Biophys. J. 35, 104 (2006).

    Article  CAS  Google Scholar 

  86. A. Kolb and B. Dünweg, J. Chem. Phys. 111, 4453 (1999).

    Article  CAS  Google Scholar 

  87. I. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

    Article  Google Scholar 

  88. I. Prigogine and R. Defay, Chemical Thermodynamics (LongmansGreen, London, 1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynwar, B.J., Deserno, M. Membrane composition-mediated protein-protein interactions. Biointerphases 3, FA117–FA124 (2008). https://doi.org/10.1116/1.2977492

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2977492