Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Membrane composition-mediated protein-protein interactions

Article metrics

Abstract

The authors investigate membrane composition-mediated interactions between proteins adsorbed onto a two-component lipid bilayer close to critical demixing using coarse-grained molecular dynamics simulations and a phenomenological Ginzburg-Landau theory. The simulations consist of three-bead lipids and platelike proteins, which adsorb onto the membrane by binding preferentially to one of the two lipid species. The composition profile around one protein and the pair correlation function between two proteins are measured and compared to the analytical predictions. The theoretical framework is applicable to any scalar field embedded in the membrane, and although in this work the authors treat flat membranes, the methodology extends readily to curved geometries. Neglecting fluctuations, both lipid composition profile and induced protein pair potential are predicted to follow a zeroth order modified Bessel function of the second kind with the same characteristic decay length. These predictions are consistent with our molecular dynamics simulations, except that the interaction range is found to be larger than the single profile correlation length.

References

  1. 1

    S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).

  2. 2

    D. A. Brown and E. London, Biochem. Biophys. Res. Commun. 240, 1 (1997).

  3. 3

    K. Simons and E. Ikonen, Nature (London) 387, 569 (1997).

  4. 4

    D. A. Brown and E. London, J. Membr. Biol. 164, 103 (1998).

  5. 5

    D. A. Brown and E. London, Annu. Rev. Cell Dev. Biol. 14, 111 (1998).

  6. 6

    D. A. Brown and E. London, J. Biol. Chem. 275, 17221 (2000).

  7. 7

    S. L. Veatch and S. L. Keller, Phys. Rev. Lett. 89, 268101 (2002).

  8. 8

    S. L. Veatch and S. L. Keller, Biophys. J. 85, 3074 (2003).

  9. 9

    T. Baumgart, S. T. Hess, and W. W. Webb, Nature (London) 425, 821 (2003).

  10. 10

    S. L. Veatch, I. V. Polozov, K. Gawrisch, and S. L. Keller, Biophys. J. 86, 2910 (2004).

  11. 11

    S. L. Veatch and S. L. Keller, Phys. Rev. Lett. 94, 148101 (2005).

  12. 12

    G. W. Feigenson, Annu. Rev. Biophys. Biomol. Struct. 36, 63 (2007).

  13. 13

    T. Baumgart, A. T. Hammond, P. Sengupta, S. T. Hess, D. A. Holowka, B. A. Baird, and W. W. Webb, Proc. Natl. Acad. Sci. U.S.A. 104, 3165 (2007).

  14. 14

    J. Fan, M. Sammalkorpi, and M. Haataja, Phys. Rev. Lett. 100, 178102 (2008).

  15. 15

    J. Gomez, F. Sagues, and R. Reigada, Phys. Rev. E 77, 021907 (2008).

  16. 16

    A. Kusumi et al., Annu. Rev. Biophys. Biomol. Struct. 34, 351 (2005).

  17. 17

    O. G. Mouritsen and M. Bloom, Biophys. J. 46, 141 (1984).

  18. 18

    D. R. Fattal and A. Ben Shaul, Biophys. J. 65, 1795 (1993).

  19. 19

    H. Aranda-Espinoza, A. Berman, N. Dan, P. Pincus, and S. Safran, Biophys. J. 71, 648 (1996).

  20. 20

    C. Nielsen, M. Goulian, and O. S. Andersen, Biophys. J. 74, 1966 (1998).

  21. 21

    S. May and A. Ben Shaul, Biophys. J. 76, 751 (1999).

  22. 22

    S. May and A. Ben Shaul, Phys. Chem. Chem. Phys. 2, 4494 (2000).

  23. 23

    T. Gil and J. H. Ipsen, Phys. Rev. E 55, 1713 (1997).

  24. 24

    T. Gil, M. C. Sabra, J. H. Ipsen, and O. G. Mouritsen, Biophys. J. 73, 1728 (1997).

  25. 25

    T. Gil, J. H. Ipsen, and C. F. Tejero, Phys. Rev. E 57, 3123 (1998).

  26. 26

    T. Gil, J. H. Ipsen, O. G. Mouritsen, M. C. Sabra, M. M. Sperotto, and M. J. Zuckermann, Biochim. Biophys. Acta 1376, 245 (1998).

  27. 27

    S. May, D. Harries, and A. Ben Shaul, Biophys. J. 79, 1747 (2000).

  28. 28

    S. May, D. Harries, and A. Ben Shaul, Phys. Rev. Lett. 89, 268102 (2002).

  29. 29

    E. C. Mbamala, A. Ben-Shaul, and S. May, Biophys. J. 88, 1702 (2004).

  30. 30

    M. Goulian, R. Bruinsma, and P. Pincus, Europhys. Lett. 22, 145 (1993).

  31. 31

    M. Goulian, R. Bruinsma, and P. Pincus, Europhys. Lett. 23, 155 (1993).

  32. 32

    J.-M. Park and T. C. Lubensky, J. Phys. I France 6, 1217 (1996).

  33. 33

    J. B. Fournier and P. G. Dommersnes, Europhys. Lett. 39, 681 (1997).

  34. 34

    T. Weikl, M. Kozlov, and W. Helfrich, Phys. Rev. E 57, 6988 (1998).

  35. 35

    P. G. Dommersnes, J. B. Fournier, and P. Galatola, Europhys. Lett. 42, 233 (1998).

  36. 36

    P. Dommersnes and J.-B. Fournier, Eur. Phys. J. B 12, 9 (1999).

  37. 37

    M. S. Turner and P. Sens, Biophys. J. 76, 564 (1999).

  38. 38

    V. Marchenko and C. Misbah, Eur. Phys. J. E 8, 477 (2002).

  39. 39

    J.-B. Fournier, P. Dommersnes, and P. Galatola, C. R. Biologies 326, 467 (2003).

  40. 40

    D. Bartolo and J. Fournier, Eur. Phys. J. E 11, 141 (2003).

  41. 41

    A. Evans, M. Turner, and P. Sens, Phys. Rev. E 67, 041907 (2003).

  42. 42

    T. Weikl, Eur. Phys. J. E 12, 265 (2003).

  43. 43

    P. Sens and M. Turner, Biophys. J. 86, 2049 (2004).

  44. 44

    M. M. Müller, M. Deserno, and J. Guven, Europhys. Lett. 69, 482 (2005).

  45. 45

    M. Müller, M. Deserno, and J. Guven, Phys. Rev. E 72, 061407 (2005).

  46. 46

    B. Reynwar, G. Illya, V. Harmandaris, M. Mller, K. Kremer, and M. Deserno, Nature (London) 447, 461 (2007).

  47. 47

    H. B. G. Casimir, Proc. K. Ned. Akad. Wet. B51, 793 (1948).

  48. 48

    M. E. Fisher, P. G. de Gennes, and C. R. Seances, C. R. Seances Acad. Sci., Ser. B 287, 207 (1978).

  49. 49

    M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994).

  50. 50

    M. Krech, Phys. Rev. E 56, 1642 (1997).

  51. 51

    M. Krech, J. Phys.: Condens. Matter 11, R391 (1999).

  52. 52

    C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger, Nature (London) 451, 172 (2008).

  53. 53

    R. R. Netz, Phys. Rev. Lett. 76, 3646 (1996).

  54. 54

    F. Jähnig, Biophys. J. 36, 329 (1981).

  55. 55

    R. Golestanian, M. Goulian, and M. Kardar, Europhys. Lett. 33, 241 (1996).

  56. 56

    P. G. Dommersnes and J. B. Fournier, Europhys. Lett. 46, 256 (1999).

  57. 57

    T. R. Weikl, Europhys. Lett. 54, 547 (2001).

  58. 58

    W. Helfrich and T. R. Weikl, Eur. Phys. J. E 5, 423 (2001).

  59. 59

    T. Taniguchi, Phys. Rev. Lett. 76, 4444 (1996).

  60. 60

    P. B. S. Kumar and M. Rao, Phys. Rev. Lett. 80, 2489 (1998).

  61. 61

    Y. Jiang, T. Lookman, and A. Saxena, Phys. Rev. E 61, R57 (2000).

  62. 62

    J. L. McWhirter, G. Ayton, and G. A. Voth, Biophys. J. 87, 3242 (2004).

  63. 63

    G. S. Ayton, J. L. McWhirter, P. McMurtry, and G. A. Voth, Biophys. J. 88, 3855 (2005).

  64. 64

    Q. Shi and G. A. Voth, Biophys. J. 89, 2385 (2005).

  65. 65

    A. Hanke, F. Schlesener, E. Eisenriegler, and S. Dietrich, Phys. Rev. Lett. 81, 1885 (1998).

  66. 66

    F. Schlesener, A. Hanke, and S. Dietrich, J. Stat. Phys. 110, 981 (2003).

  67. 67

    L. S. Brown, Ann. Phys. 126, 135 (1980).

  68. 68

    E. Eisenriegler and M. Stapper, Phys. Rev. B 50, 10009 (1994).

  69. 69

    J.-B. Fournier and C. Barbetta, Phys. Rev. Lett. 100, 078103 (2008).

  70. 70

    S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Perseus, Cambridge, 1994).

  71. 71

    J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (DoverMineola, NY, 2002).

  72. 72

    J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena (Clarendon, Oxford, 1995).

  73. 73

    L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Butterworth, Washington, DC/Heinemann, Oxford, 1999).

  74. 74

    R. Capovilla and J. Guven, J. Phys. A 35, 6233 (2002).

  75. 75

    R. Capovilla and J. Guven, J. Phys.: Condens. Matter 16, S2187 (2004).

  76. 76

    J. Guven, J. Phys. A 37, L313 (2004).

  77. 77

    M. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, NJ, 1976).

  78. 78

    E. Kreyszig, Differential Geometry (Dover, New York, 1991).

  79. 79

    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).

  80. 80

    M. M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288 (1949).

  81. 81

    H.-J. Limbach, A. Arnold, B. A. Mann, and C. Holm, Comput. Phys. Commun. 174, 704 (2006).

  82. 82

    I. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72, 011506 (2005).

  83. 83

    M. Müller, K. Katsov, and M. Schick, Phys. Rep. 434, 113 (2006).

  84. 84

    M. Venturoli, M. M. Sperotto, M. Kranenburg, and B. Smit, Phys. Rep. 437, 1 (2006).

  85. 85

    G. Brannigan, L. C. L. Lin, and F. L. H. Brown, Eur. Biophys. J. 35, 104 (2006).

  86. 86

    A. Kolb and B. Dünweg, J. Chem. Phys. 111, 4453 (1999).

  87. 87

    I. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

  88. 88

    I. Prigogine and R. Defay, Chemical Thermodynamics (LongmansGreen, London, 1954).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article