Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Simulations of water at the interface with hydrophilic self-assembled monolayers (Review)

Article metrics

  • 528 Accesses

  • 27 Citations

Abstract

Simulations of water at hydrophilic self-assembled monolayer (SAM) surfaces are especially relevant for biological interfaces. Well-defined, atomically smooth surfaces that can be continuously varied are possible with SAMs. These characteristics enable more accurate measurements than many other surfaces with the added advantage of tailoring the surface to treat specific chemical groups. A fundamental question is how solid surfaces affect the structure and dynamics of water. Measurements of the structure and dynamics of water at solid surfaces have improved significantly, but there remain differences among the experiments. In this article, the authors review simulations of water at the interface with hydrophilic SAMs. These simulations find that while the interfacial water molecules are slower than the bulk water molecules, the interfacial dynamics remains that of a liquid. A major biological application of SAMs is for making coatings resistant to protein adsorption. SAMs terminated with ethylene glycol monomers have proven to be excellent at resisting protein adsorption. Understanding the mechanisms behind this resistance remains an unresolved issue. Recent simulations suggest a new perspective of the role of interfacial water and the inseparable interplay between the SAM and the water.

References

  1. 1

    J. Israelachvili and H. Wennerström, Nature (London) 379, 219 (1996).

  2. 2

    G. Hummer, S. Garde, A. E. García, M. E. Paulaitis, and L. R. Pratt, J. Phys. Chem. B 102, 10469 (1998).

  3. 3

    R. R. Netz, Curr. Opin. Colloid Interface Sci. 9, 192 (2004).

  4. 4

    A. J. Hopkins, C. L. McFearin, and G. L. Richmond, Curr. Opin. Solid State Mater. Sci. 9, 19 (2005).

  5. 5

    P. Ball, Chem. Rev. (Washington, D.C.) 108, 74 (2008).

  6. 6

    Y. R. Shen and V. Ostroverkhov, Chem. Rev. (Washington, D.C.) 106, 1140 (2006).

  7. 7

    T. M. Raschke, Curr. Opin. Struct. Biol. 16, 152 (2006).

  8. 8

    K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).

  9. 9

    M. Morra, J. Biomater. Sci., Polym. Ed. 11, 547 (2000).

  10. 10

    L. F. Scatena and G. L. Richmond, Science 292, 908 (2001).

  11. 11

    T. R. Jensen, M. O. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer, and T. Bjornholm, Phys. Rev. Lett. 90, 086101 (2003).

  12. 12

    V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, Phys. Rev. Lett. 94, 046102 (2005).

  13. 13

    J. A. McGuire and Y. R. Shen, Science 313, 1945 (2006).

  14. 14

    T. L. Tarbuck, S. T. Ota, and G. L. Richmond, J. Am. Chem. Soc. 128, 14519 (2006).

  15. 15

    W. H. Briscoe, S. Titmuss, F. Tiberg, R. K. Thomas, D. J. McGillivray, and J. Klein, Nature (London) 444, 191 (2006).

  16. 16

    S. H. Lee and P. J. Rossky, J. Chem. Phys. 100, 3334 (1994).

  17. 17

    A. Wallqvist and B. J. Berne, J. Phys. Chem. 99, 2893 (1995).

  18. 18

    E. J.W. Wensink, A. C. Hoffmann, M. E. F. Apol, and H. J. C. Berendsen, Langmuir 16, 7392 (2000).

  19. 19

    R. Y. Wang, M. Himmelhaus, J. Fick, S. Herrwerth, W. Eck, and M. Grunze, J. Chem. Phys. 122, 164702 (2005).

  20. 20

    T.-M. Chang and L. X. Dang, Chem. Rev. (Washington, D.C.) 106, 1305 (2006).

  21. 21

    A. Ulman, S. D. Evans, Y. Shnidman, R. Sharma, and J. E. Eilers, Adv. Colloid Interface Sci. 39, 175 (1991).

  22. 22

    Q. Du, E. Freysz, and Y. R. Shen, Phys. Rev. Lett. 72, 238 (1994).

  23. 23

    H. I. Kim, J. G. Kushmerick, J. E. Houston, and B. C. Bunker, Langmuir 19, 9271 (2003).

  24. 24

    R. C. Major, J. E. Houston, M. J. McGrath, J. I. Siepmann, and X.-Y. Zhu, Phys. Rev. Lett. 96, 117803 (2006).

  25. 25

    M. Sovago, R. K. Campen, G. W. H. Wurpel, M. Muller, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 100, 173901 (2008).

  26. 26

    J. Klein and E. Kumacheva, J. Chem. Phys. 108, 6996 (1998).

  27. 27

    U. Raviv, P. Laurat, and J. Klein, Nature (London) 413, 51 (2001).

  28. 28

    J. Klein, U. Raviv, S. Perkin, N. Kampf, L. Chai, and S. Giasson, J. Phys.: Condens. Matter 16, S5437 (2004).

  29. 29

    U. Raviv, S. Perkin, P. Laurat, and J. Klein, Langmuir 20, 5322 (2004).

  30. 30

    Y. X. Zhu and S. Granick, Phys. Rev. Lett. 87, 096104 (2001).

  31. 31

    J. Zheng, L. Li, S. Chen, and S. Jiang, Langmuir 20, 8931 (2004).

  32. 32

    L. Cheng, P. Fenter, K. L. Nagy, M. L. Schlegel, and N. C. Sturchio, Phys. Rev. Lett. 87, 156103 (2001).

  33. 33

    D. Schwendel, T. Hayashi, R. Dahint, A. Pertsin, M. Grunze, R. Stoltz, and F. Schreiber, Langmuir 19, 2284 (2003).

  34. 34

    J. Gao, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997).

  35. 35

    H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).

  36. 36

    J. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 1992).

  37. 37

    R. G. Horn, D. T. Smith, and W. Haller, Chem. Phys. Lett. 162, 404 (1989).

  38. 38

    P. J. Feibelman, Langmuir 22, 2136 (2006).

  39. 39

    I. Szleifer, Biophys. J. 72, 595 (1997).

  40. 40

    I. Szleifer, Curr. Opin. Solid State Mater. Sci. 2, 337 (1997).

  41. 41

    J. Satulovsky, M. A. Carignano, and I. Szleifer, Proc. Natl. Acad. Sci. U.S.A. 97, 9037 (2000).

  42. 42

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

  43. 43

    K. Feldman, G. Hähner, N. D. Spencer, P. Harder, and M. Grunze, J. Am. Chem. Soc. 121, 10134 (1999).

  44. 44

    C. Dicke and G. Hähner, J. Am. Chem. Soc. 124, 12619 (2002).

  45. 45

    45 H. J. Kreuzer, R. L. C. Wang, and M. Grunze, J. Am. Chem. Soc. 125, 8384 (2003).

  46. 46

    D. J. Vanderah, H. La, J. Naff, V. Silin, and K. A. Rubinson, J. Am. Chem. Soc. 126, 13639 (2004).

  47. 47

    L. Li, S. Chen, J. Zheng, B. D. Ratner, and S. Jiang, J. Phys. Chem. B 109, 2934 (2005).

  48. 48

    S. Herrweth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

  49. 49

    F. Schreiber, J. Phys.: Condens. Matter 16, R881 (2004).

  50. 50

    F. Schreiber, Prog. Surf. Sci. 64, 151 (2000).

  51. 51

    J. Sagiv, J. Am. Chem. Soc. 102, 92 (1980).

  52. 52

    M. J. Stevens, Langmuir 15, 2773 (1999).

  53. 53

    I. M. Tidswell, B. M. Ocko, P. S. Pershan, S. R. Wasserman, G. M. Whitesides, and J. D. Axe, Phys. Rev. B 41, 1111 (1990).

  54. 54

    K. Kojio, S. Ge, A. Takahara, and T. Kajiyama, Langmuir 14, 971 (1998).

  55. 55

    H. Yamamoto, T. Watanabe, and I. Ohdomari, J. Chem. Phys. 128, 164710 (2008).

  56. 56

    M. Chandross, E. B. Webb III, M. J. Stevens, G. S. Grest, and S. H. Garofalini, Phys. Rev. Lett. 93, 166103 (2004).

  57. 57

    D. Litton and S. H. Garofalini, J. Appl. Phys. 89, 6013 (2001).

  58. 58

    N. Winter, J. Vieceli, and I. Benjamin, J. Phys. Chem. B 112, 227 (2008).

  59. 59

    J. M. D. Lane, M. Chandross, M. J. Stevens, and G. S. Grest, Langmuir 24, 5209 (2008).

  60. 60

    J. Zheng, L. Li, H.-K. Tsao, Y.-J. Sheng, S. Chen, and S. Jiang, Biophys. J. 89, 158 (2005).

  61. 61

    J. C. Hower, Y. He, M. T. Bernards, and S. Jiang, J. Chem. Phys. 125, 214704 (2006).

  62. 62

    V. P. Raut, M. A. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 21, 1629 (2005).

  63. 63

    Y. He, Y. Chang, J. C. Hower, J. Zheng, S. Chen, and S. Jiang, Phys. Chem. Chem. Phys. (to be published).

  64. 64

    A. E. Ismail, G. S. Grest, and M. J. Stevens, Langmuir 23, 8508 (2007).

  65. 65

    A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).

  66. 66

    A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).

  67. 67

    G. D. Smith, O. Borodin, and D. Bedrov, J. Comput. Chem. 23, 1480 (2002).

  68. 68

    J. Vieceli and I. Benjamin, J. Phys. Chem. B 106, 7898 (2002).

  69. 69

    J. Vieceli and I. Benjamin, J. Phys. Chem. B 107, 4801 (2003).

  70. 70

    W. Mar and M. L. Klein, Langmuir 10, 188 (1994).

  71. 71

    M. O. Jensen, O. G. Mouritsen, and G. H. Peters, J. Chem. Phys. 120, 9729 (2004).

  72. 72

    S.-H. Park and G. Sposito, Phys. Rev. Lett. 89, 085501 (2002).

  73. 73

    N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Phys. Rev. E 73, 041604 (2006).

  74. 74

    J. Janecek and R. R. Netz, Langmuir 23, 8417 (2007).

  75. 75

    T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman, and E. Riedo, Phys. Rev. B 75, 115415 (2007).

  76. 76

    Y. Leng and P. T. Cummings, Phys. Rev. Lett. 94, 026101 (2005).

  77. 77

    R. Zangi and A. E. Mark, Phys. Rev. Lett. 91, 025502 (2003).

  78. 78

    A. D. Wissner-Gross and E. Kaxiras, Phys. Rev. E 76, 020501 (2007).

  79. 79

    R. L. C. Wang, H. J. Kreuzer, and M. Grunze, J. Phys. Chem. B 101, 9767 (1997).

  80. 80

    F. Wang, S. J. Stuart, and R. A. Latour, BioInterphases 3, 9 (2008).

  81. 81

    L. J. Lis, M. McAlister, N. Fuller, R. P. Rand, and V. A. Parsegian, Biophys. J. 37, 657 (1982).

  82. 82

    J. K. Lee and B. R. Lentz, Proc. Natl. Acad. Sci. U.S.A. 95, 9274 (1998).

  83. 83

    P. Jungwirth and D. J. Tobias, J. Phys. Chem. B 106, 6361 (2002).

  84. 84

    M. Mucha, T. Frigato, L. Levering, H. Allen, D. Tobias, L. Dang, and P. Jungwirth, J. Comput. Chem. 109, 7617 (2005).

  85. 85

    K. N. Kudin and R. Car, J. Am. Chem. Soc. 130, 3915 (2008).

  86. 86

    H. Yu and W. F. van Gunsteren, Comput. Phys. Commun. 172, 69 (2005).

  87. 87

    S. Patel and C. Brooks, J. Comput. Chem. 25, 1 (2004).

  88. 88

    S. Patel, A. Mackerell, and C. Brooks, J. Comput. Chem. 25, 1504 (2004).

  89. 89

    Z. Wang, W. Zhang, C. Wu, H. Lei, P. Cieplak, and Y. Duan, J. Comput. Chem. 27, 781 (2006).

  90. 90

    P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 109, 2949 (2005).

  91. 91

    D. S. Walker, D. K. Hore, and G. L. Richmond, J. Phys. Chem. B 110, 20451 (2006).

  92. 92

    I.-F. W. Kuo, C. J. Mundy, B. L. Eggimann, M. J. McGrath, J. I. Siepmann, B. Chen, J. Vieceli, and D. J. Tobias, J. Phys. Chem. B 110, 3738 (2006).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article