Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Simulations of water at the interface with hydrophilic self-assembled monolayers (Review)

Abstract

Simulations of water at hydrophilic self-assembled monolayer (SAM) surfaces are especially relevant for biological interfaces. Well-defined, atomically smooth surfaces that can be continuously varied are possible with SAMs. These characteristics enable more accurate measurements than many other surfaces with the added advantage of tailoring the surface to treat specific chemical groups. A fundamental question is how solid surfaces affect the structure and dynamics of water. Measurements of the structure and dynamics of water at solid surfaces have improved significantly, but there remain differences among the experiments. In this article, the authors review simulations of water at the interface with hydrophilic SAMs. These simulations find that while the interfacial water molecules are slower than the bulk water molecules, the interfacial dynamics remains that of a liquid. A major biological application of SAMs is for making coatings resistant to protein adsorption. SAMs terminated with ethylene glycol monomers have proven to be excellent at resisting protein adsorption. Understanding the mechanisms behind this resistance remains an unresolved issue. Recent simulations suggest a new perspective of the role of interfacial water and the inseparable interplay between the SAM and the water.

References

  1. 1

    J. Israelachvili and H. Wennerström, Nature (London) 379, 219 (1996).

    Article  CAS  Google Scholar 

  2. 2

    G. Hummer, S. Garde, A. E. García, M. E. Paulaitis, and L. R. Pratt, J. Phys. Chem. B 102, 10469 (1998).

    Article  CAS  Google Scholar 

  3. 3

    R. R. Netz, Curr. Opin. Colloid Interface Sci. 9, 192 (2004).

    Article  CAS  Google Scholar 

  4. 4

    A. J. Hopkins, C. L. McFearin, and G. L. Richmond, Curr. Opin. Solid State Mater. Sci. 9, 19 (2005).

    Article  CAS  Google Scholar 

  5. 5

    P. Ball, Chem. Rev. (Washington, D.C.) 108, 74 (2008).

    CAS  Google Scholar 

  6. 6

    Y. R. Shen and V. Ostroverkhov, Chem. Rev. (Washington, D.C.) 106, 1140 (2006).

    CAS  Google Scholar 

  7. 7

    T. M. Raschke, Curr. Opin. Struct. Biol. 16, 152 (2006).

    Article  CAS  Google Scholar 

  8. 8

    K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).

    Article  CAS  Google Scholar 

  9. 9

    M. Morra, J. Biomater. Sci., Polym. Ed. 11, 547 (2000).

    Article  CAS  Google Scholar 

  10. 10

    L. F. Scatena and G. L. Richmond, Science 292, 908 (2001).

    Article  CAS  Google Scholar 

  11. 11

    T. R. Jensen, M. O. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer, and T. Bjornholm, Phys. Rev. Lett. 90, 086101 (2003).

    Article  Google Scholar 

  12. 12

    V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, Phys. Rev. Lett. 94, 046102 (2005).

    Article  Google Scholar 

  13. 13

    J. A. McGuire and Y. R. Shen, Science 313, 1945 (2006).

    Article  CAS  Google Scholar 

  14. 14

    T. L. Tarbuck, S. T. Ota, and G. L. Richmond, J. Am. Chem. Soc. 128, 14519 (2006).

    Article  CAS  Google Scholar 

  15. 15

    W. H. Briscoe, S. Titmuss, F. Tiberg, R. K. Thomas, D. J. McGillivray, and J. Klein, Nature (London) 444, 191 (2006).

    Article  CAS  Google Scholar 

  16. 16

    S. H. Lee and P. J. Rossky, J. Chem. Phys. 100, 3334 (1994).

    Article  CAS  Google Scholar 

  17. 17

    A. Wallqvist and B. J. Berne, J. Phys. Chem. 99, 2893 (1995).

    Article  CAS  Google Scholar 

  18. 18

    E. J.W. Wensink, A. C. Hoffmann, M. E. F. Apol, and H. J. C. Berendsen, Langmuir 16, 7392 (2000).

    Article  CAS  Google Scholar 

  19. 19

    R. Y. Wang, M. Himmelhaus, J. Fick, S. Herrwerth, W. Eck, and M. Grunze, J. Chem. Phys. 122, 164702 (2005).

    Article  CAS  Google Scholar 

  20. 20

    T.-M. Chang and L. X. Dang, Chem. Rev. (Washington, D.C.) 106, 1305 (2006).

    CAS  Google Scholar 

  21. 21

    A. Ulman, S. D. Evans, Y. Shnidman, R. Sharma, and J. E. Eilers, Adv. Colloid Interface Sci. 39, 175 (1991).

    Article  Google Scholar 

  22. 22

    Q. Du, E. Freysz, and Y. R. Shen, Phys. Rev. Lett. 72, 238 (1994).

    Article  CAS  Google Scholar 

  23. 23

    H. I. Kim, J. G. Kushmerick, J. E. Houston, and B. C. Bunker, Langmuir 19, 9271 (2003).

    Article  CAS  Google Scholar 

  24. 24

    R. C. Major, J. E. Houston, M. J. McGrath, J. I. Siepmann, and X.-Y. Zhu, Phys. Rev. Lett. 96, 117803 (2006).

    Article  Google Scholar 

  25. 25

    M. Sovago, R. K. Campen, G. W. H. Wurpel, M. Muller, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 100, 173901 (2008).

    Article  Google Scholar 

  26. 26

    J. Klein and E. Kumacheva, J. Chem. Phys. 108, 6996 (1998).

    Article  CAS  Google Scholar 

  27. 27

    U. Raviv, P. Laurat, and J. Klein, Nature (London) 413, 51 (2001).

    Article  CAS  Google Scholar 

  28. 28

    J. Klein, U. Raviv, S. Perkin, N. Kampf, L. Chai, and S. Giasson, J. Phys.: Condens. Matter 16, S5437 (2004).

    Article  CAS  Google Scholar 

  29. 29

    U. Raviv, S. Perkin, P. Laurat, and J. Klein, Langmuir 20, 5322 (2004).

    Article  CAS  Google Scholar 

  30. 30

    Y. X. Zhu and S. Granick, Phys. Rev. Lett. 87, 096104 (2001).

    Article  CAS  Google Scholar 

  31. 31

    J. Zheng, L. Li, S. Chen, and S. Jiang, Langmuir 20, 8931 (2004).

    Article  CAS  Google Scholar 

  32. 32

    L. Cheng, P. Fenter, K. L. Nagy, M. L. Schlegel, and N. C. Sturchio, Phys. Rev. Lett. 87, 156103 (2001).

    Article  CAS  Google Scholar 

  33. 33

    D. Schwendel, T. Hayashi, R. Dahint, A. Pertsin, M. Grunze, R. Stoltz, and F. Schreiber, Langmuir 19, 2284 (2003).

    Article  CAS  Google Scholar 

  34. 34

    J. Gao, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997).

    Article  CAS  Google Scholar 

  35. 35

    H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).

    Article  CAS  Google Scholar 

  36. 36

    J. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 1992).

    Google Scholar 

  37. 37

    R. G. Horn, D. T. Smith, and W. Haller, Chem. Phys. Lett. 162, 404 (1989).

    Article  CAS  Google Scholar 

  38. 38

    P. J. Feibelman, Langmuir 22, 2136 (2006).

    Article  CAS  Google Scholar 

  39. 39

    I. Szleifer, Biophys. J. 72, 595 (1997).

    Article  CAS  Google Scholar 

  40. 40

    I. Szleifer, Curr. Opin. Solid State Mater. Sci. 2, 337 (1997).

    Article  CAS  Google Scholar 

  41. 41

    J. Satulovsky, M. A. Carignano, and I. Szleifer, Proc. Natl. Acad. Sci. U.S.A. 97, 9037 (2000).

    Article  CAS  Google Scholar 

  42. 42

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    Article  CAS  Google Scholar 

  43. 43

    K. Feldman, G. Hähner, N. D. Spencer, P. Harder, and M. Grunze, J. Am. Chem. Soc. 121, 10134 (1999).

    Article  CAS  Google Scholar 

  44. 44

    C. Dicke and G. Hähner, J. Am. Chem. Soc. 124, 12619 (2002).

    Article  CAS  Google Scholar 

  45. 45

    45 H. J. Kreuzer, R. L. C. Wang, and M. Grunze, J. Am. Chem. Soc. 125, 8384 (2003).

    Article  CAS  Google Scholar 

  46. 46

    D. J. Vanderah, H. La, J. Naff, V. Silin, and K. A. Rubinson, J. Am. Chem. Soc. 126, 13639 (2004).

    Article  CAS  Google Scholar 

  47. 47

    L. Li, S. Chen, J. Zheng, B. D. Ratner, and S. Jiang, J. Phys. Chem. B 109, 2934 (2005).

    Article  CAS  Google Scholar 

  48. 48

    S. Herrweth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

    Article  Google Scholar 

  49. 49

    F. Schreiber, J. Phys.: Condens. Matter 16, R881 (2004).

    Article  CAS  Google Scholar 

  50. 50

    F. Schreiber, Prog. Surf. Sci. 64, 151 (2000).

    Article  Google Scholar 

  51. 51

    J. Sagiv, J. Am. Chem. Soc. 102, 92 (1980).

    Article  CAS  Google Scholar 

  52. 52

    M. J. Stevens, Langmuir 15, 2773 (1999).

    Article  CAS  Google Scholar 

  53. 53

    I. M. Tidswell, B. M. Ocko, P. S. Pershan, S. R. Wasserman, G. M. Whitesides, and J. D. Axe, Phys. Rev. B 41, 1111 (1990).

    Article  CAS  Google Scholar 

  54. 54

    K. Kojio, S. Ge, A. Takahara, and T. Kajiyama, Langmuir 14, 971 (1998).

    Article  CAS  Google Scholar 

  55. 55

    H. Yamamoto, T. Watanabe, and I. Ohdomari, J. Chem. Phys. 128, 164710 (2008).

    Article  Google Scholar 

  56. 56

    M. Chandross, E. B. Webb III, M. J. Stevens, G. S. Grest, and S. H. Garofalini, Phys. Rev. Lett. 93, 166103 (2004).

    Article  CAS  Google Scholar 

  57. 57

    D. Litton and S. H. Garofalini, J. Appl. Phys. 89, 6013 (2001).

    Article  CAS  Google Scholar 

  58. 58

    N. Winter, J. Vieceli, and I. Benjamin, J. Phys. Chem. B 112, 227 (2008).

    Article  CAS  Google Scholar 

  59. 59

    J. M. D. Lane, M. Chandross, M. J. Stevens, and G. S. Grest, Langmuir 24, 5209 (2008).

    Article  CAS  Google Scholar 

  60. 60

    J. Zheng, L. Li, H.-K. Tsao, Y.-J. Sheng, S. Chen, and S. Jiang, Biophys. J. 89, 158 (2005).

    Article  CAS  Google Scholar 

  61. 61

    J. C. Hower, Y. He, M. T. Bernards, and S. Jiang, J. Chem. Phys. 125, 214704 (2006).

    Article  Google Scholar 

  62. 62

    V. P. Raut, M. A. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 21, 1629 (2005).

    Article  CAS  Google Scholar 

  63. 63

    Y. He, Y. Chang, J. C. Hower, J. Zheng, S. Chen, and S. Jiang, Phys. Chem. Chem. Phys. (to be published).

  64. 64

    A. E. Ismail, G. S. Grest, and M. J. Stevens, Langmuir 23, 8508 (2007).

    Article  CAS  Google Scholar 

  65. 65

    A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).

    Article  CAS  Google Scholar 

  66. 66

    A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).

    Article  CAS  Google Scholar 

  67. 67

    G. D. Smith, O. Borodin, and D. Bedrov, J. Comput. Chem. 23, 1480 (2002).

    Article  CAS  Google Scholar 

  68. 68

    J. Vieceli and I. Benjamin, J. Phys. Chem. B 106, 7898 (2002).

    Article  CAS  Google Scholar 

  69. 69

    J. Vieceli and I. Benjamin, J. Phys. Chem. B 107, 4801 (2003).

    Article  CAS  Google Scholar 

  70. 70

    W. Mar and M. L. Klein, Langmuir 10, 188 (1994).

    Article  CAS  Google Scholar 

  71. 71

    M. O. Jensen, O. G. Mouritsen, and G. H. Peters, J. Chem. Phys. 120, 9729 (2004).

    Article  CAS  Google Scholar 

  72. 72

    S.-H. Park and G. Sposito, Phys. Rev. Lett. 89, 085501 (2002).

    Article  Google Scholar 

  73. 73

    N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Phys. Rev. E 73, 041604 (2006).

    Article  Google Scholar 

  74. 74

    J. Janecek and R. R. Netz, Langmuir 23, 8417 (2007).

    Article  CAS  Google Scholar 

  75. 75

    T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman, and E. Riedo, Phys. Rev. B 75, 115415 (2007).

    Article  Google Scholar 

  76. 76

    Y. Leng and P. T. Cummings, Phys. Rev. Lett. 94, 026101 (2005).

    Article  Google Scholar 

  77. 77

    R. Zangi and A. E. Mark, Phys. Rev. Lett. 91, 025502 (2003).

    Article  Google Scholar 

  78. 78

    A. D. Wissner-Gross and E. Kaxiras, Phys. Rev. E 76, 020501 (2007).

    Article  Google Scholar 

  79. 79

    R. L. C. Wang, H. J. Kreuzer, and M. Grunze, J. Phys. Chem. B 101, 9767 (1997).

    Article  CAS  Google Scholar 

  80. 80

    F. Wang, S. J. Stuart, and R. A. Latour, BioInterphases 3, 9 (2008).

    Article  Google Scholar 

  81. 81

    L. J. Lis, M. McAlister, N. Fuller, R. P. Rand, and V. A. Parsegian, Biophys. J. 37, 657 (1982).

    CAS  Google Scholar 

  82. 82

    J. K. Lee and B. R. Lentz, Proc. Natl. Acad. Sci. U.S.A. 95, 9274 (1998).

    Article  CAS  Google Scholar 

  83. 83

    P. Jungwirth and D. J. Tobias, J. Phys. Chem. B 106, 6361 (2002).

    Article  CAS  Google Scholar 

  84. 84

    M. Mucha, T. Frigato, L. Levering, H. Allen, D. Tobias, L. Dang, and P. Jungwirth, J. Comput. Chem. 109, 7617 (2005).

    CAS  Google Scholar 

  85. 85

    K. N. Kudin and R. Car, J. Am. Chem. Soc. 130, 3915 (2008).

    Article  CAS  Google Scholar 

  86. 86

    H. Yu and W. F. van Gunsteren, Comput. Phys. Commun. 172, 69 (2005).

    Article  CAS  Google Scholar 

  87. 87

    S. Patel and C. Brooks, J. Comput. Chem. 25, 1 (2004).

    Article  CAS  Google Scholar 

  88. 88

    S. Patel, A. Mackerell, and C. Brooks, J. Comput. Chem. 25, 1504 (2004).

    Article  CAS  Google Scholar 

  89. 89

    Z. Wang, W. Zhang, C. Wu, H. Lei, P. Cieplak, and Y. Duan, J. Comput. Chem. 27, 781 (2006).

    Article  CAS  Google Scholar 

  90. 90

    P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 109, 2949 (2005).

    Article  CAS  Google Scholar 

  91. 91

    D. S. Walker, D. K. Hore, and G. L. Richmond, J. Phys. Chem. B 110, 20451 (2006).

    Article  CAS  Google Scholar 

  92. 92

    I.-F. W. Kuo, C. J. Mundy, B. L. Eggimann, M. J. McGrath, J. I. Siepmann, B. Chen, J. Vieceli, and D. J. Tobias, J. Phys. Chem. B 110, 3738 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stevens, M.J., Grest, G.S. Simulations of water at the interface with hydrophilic self-assembled monolayers (Review). Biointerphases 3, FC13–FC22 (2008). https://doi.org/10.1116/1.2977751

Download citation