Skip to main content

Journal for Biophysical Chemistry

Protein biochips patterned by microcontact printing or by adsorption-soft lithography in two modes

Abstract

Patterning of proteins is critical to protein biochips. Printing of layers of proteins is well established, as is adsorption of proteins to surfaces properly modified with surface chemical functionalities. The authors show that simple methods based on soft lithography stamps can be used to prepare functional antibody chips through both these routes. Both methods incorporate transfer of the stamp material poly(dimethylsiloxane) (PDMS) to the biochip, whether intended or not intended. The results indicate that microcontact printing of proteins always includes PDMS transfer, thereby creating a possibility of unspecific adsorption to a hydrophobic domain.

References

  1. 1

    A. Lueking, D. J. Cahill, and S. Mullner, Drug Discovery Today 10, 789 (2005); W. Kusnezow and J. D. Hoheisel, J. Mol. Recognit. 16, 165 (2003).

    Article  CAS  Google Scholar 

  2. 2

    R. A. Vijayendran and D. E. Leckband, Anal. Chem. 73, 471 (2001).

    Article  CAS  Google Scholar 

  3. 3

    E. W. Silverton, M. A. Navia, and D. R. Davies, Proc. Natl. Acad. Sci. U.S.A. 74, 5140 (1977).

    Article  CAS  Google Scholar 

  4. 4

    A. K. Abbas and A. H. Lichtman, in Cellular and Molecular Immunology, 5th ed., edited by W. R. Schmitt and H. Krehling (Saunders, Philadelphia, 2005), p. 43.

    Google Scholar 

  5. 5

    A. A. Karyakin, G. V. Presnova, M. Y. Rubtsova, and A. M. Egorov, Anal. Chem. 72, 3805 (2000); W. Zhang and M. J. Czupryn, Biotechnol. Prog. 18, 509 (2002); D. Gao, N. McBean, J. S. Schultz, Y. S. Yan, A. Mulchandani, and W. F. Chen, J. Am. Chem. Soc. 128, 676 (2006).

    Article  CAS  Google Scholar 

  6. 6

    J. L. Tan, J. Tien, and C. S. Chen, Langmuir 18, 519 (2002).

    Article  CAS  Google Scholar 

  7. 7

    S. W. Howell, H. D. Inerowicz, F. E. Regnier, and R. Reifenberger, Langmuir 19, 436 (2003). or]8 B.Haab, M. Dunham, and P. Brown, Genome Biol.2, research0004.1 (2001).

    Article  CAS  Google Scholar 

  8. 9

    H. Elwing, Biomaterials 19, 397 (1998).

    Article  CAS  Google Scholar 

  9. 10

    A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, Langmuir 14, 2225 (1998).

    Article  CAS  Google Scholar 

  10. 11

    J. P. Renault, A. Bernard, A. Bietsch, B. Michel, H. R. Bosshard, E. Delamarche, M. Kreiter, B. Hecht, and U. P. Wild, J. Phys. Chem. B 107, 703 (2003).

    Article  CAS  Google Scholar 

  11. 12

    J. R. LaGraff and Q. Chu-LaGraff, Langmuir 22, 4685 (2006).

    Article  CAS  Google Scholar 

  12. 13

    E. Delamarche, H. Schmid, B. Michel, and H. Biebuyck, Adv. Mater. (Weinheim, Ger.) 9, 741 (1997).

    Article  CAS  Google Scholar 

  13. 14

    M. J. Owen and P. J. Smith, J. Adhes. Sci. Technol. 8, 1063 (1994); T. Murakami, S.-i. Kuroda, and Z. Osawa, J. Colloid Interface Sci. 202, 37 (1998).

    Article  CAS  Google Scholar 

  14. 15

    D. J. Graham, D. D. Price, and B. D. Ratner, Langmuir 18, 1518 (2002).

    Article  CAS  Google Scholar 

  15. 16

    K. Glasmastar, J. Gold, A. S. Andersson, D. S. Sutherland, and B. Kasemo, Langmuir 19, 5475 (2003).

    Article  Google Scholar 

  16. 17

    R. B. A. Sharpe, D. Burdinski, C. van der Marel, J. A. J. Jansen, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, Langmuir 22, 5945 (2006).

    Article  CAS  Google Scholar 

  17. 18

    C. Thibault, C. Severac, A. F. Mingotaud, C. Vieu, and M. Mauzac, Langmuir 23, 10706 (2007).

    Article  CAS  Google Scholar 

  18. 19

    X. J. Wang, M. Ostblom, T. Johansson, and O. Inganas, Thin Solid Films 449, 125 (2004).

    Article  CAS  Google Scholar 

  19. 20

    P. Asberg, K. P. R. Nilsson, and O. Inganas, Langmuir 22, 2205 (2006).

    Article  CAS  Google Scholar 

  20. 21

    N. K. Persson and O. Inganas, Sol. Energy Mater. Sol. Cells 90, 3491 (2006).

    Article  CAS  Google Scholar 

  21. 22

    See EPAPS Document No. E-BJIOBN-3-009803 for facts and figures describing the impact of contact time on the adsorbed protein pattern and sequential PDMS surface energy pattering with a single stamp. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

  22. 23

    J. A. Wigenius, M. Hamedi, and O. Inganäs, Adv. Funct. Mater. 18, 2563 (2008).

    Article  CAS  Google Scholar 

  23. 24

    M. Pla-Roca, J. G. Fernandez, C. A. Mills, E. Martinez, and J. Samitier, Langmuir 23, 8614 (2007).

    Article  CAS  Google Scholar 

  24. 25

    S. A. Darst, M. Ahlers, P. H. Meller, E. W. Kubalek, R. Blankenburg, H. O. Ribi, H. Ringsdorf, and R. D. Kornberg, Biophys. J. 59, 387 (1991).

    Article  CAS  Google Scholar 

  25. 26

    L. Vroman, Nature (London) 196, 476 (1962).

    Article  CAS  Google Scholar 

  26. 27

    D. J. Graber, T. J. Zieziulewicz, D. A. Lawrence, W. Shain, and J. N. Turner, Langmuir 19, 5431 (2003).

    Article  CAS  Google Scholar 

  27. 28

    G. B. Sigal, M. Mrksich, and G. M. Whitesides, J. Am. Chem. Soc. 120, 3464 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sophia Fransson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wigenius, J.A., Fransson, S., von Post, F. et al. Protein biochips patterned by microcontact printing or by adsorption-soft lithography in two modes. Biointerphases 3, 75–82 (2008). https://doi.org/10.1116/1.2988771

Download citation