Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations

Article metrics

Abstract

Surface plasmon resonance (SPR) sensors use two types of surface plasmons: (i) propagating along a metal-dielectric interface and (ii) localized on metallic nano-objects. This article presents theoretical analysis of sensitivity of SPR sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles. Analytical formulas inter-relating bulk and surface refractive index sensitivity with main design parameters are derived using the electrostatic approximation. The effect of particle diameter is accounted for by means of Mie theory. Figures of merit for SPR sensors using localized and propagating surface plasmons are calculated and compared. Although sensors based on spectroscopy of localized surface plasmons on gold spherical particles show promise for detection of processes occurring in the close proximity of the particle surface, their performance is still inferior to that of SPR sensors based on spectroscopy of propagating surface plasmons.

References

  1. 1

    J. Homola, Chem. Rev. (Washington, D.C.) 108, 462 (2008).

  2. 2

    2 M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. (Washington, D.C.) 108, 494 (2008).

  3. 3

    K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

  4. 4

    A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920 (2004).

  5. 5

    A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982).

  6. 6

    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

  7. 7

    E. Hutter and J. H. Fendler, Adv. Mater. (Weinheim, Ger.) 16, 1685 (2004).

  8. 8

    M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).

  9. 9

    K. S. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).

  10. 10

    H. X. Xu and M. Kall, Sens. Actuators B 87, 244 (2002).

  11. 11

    C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, Nat. Biotechnol. 23, 741 (2005).

  12. 12

    A. J. Haes and R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596 (2002).

  13. 13

    N. Nath and A. Chilkoti, Anal. Chem. 76, 5370 (2004).

  14. 14

    J. C. Riboh, A. J. Haes, A. D. McFarland, C. R. Yonzon, and R. P. Van Duyne, J. Phys. Chem. B 107, 1772 (2003).

  15. 15

    M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 105, 2343 (2001).

  16. 16

    C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Institut für Angewandte Physik, Bern, Switzerland, Report No. 2002-08, 2002.

  17. 17

    D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 1998).

  18. 18

    Optical constants database available from SOPRA SA, France at http://www.sopra-sa.com/index2.php?goto=dlrub=4

  19. 19

    C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).

  20. 20

    J. Homola, Surface Plasmon Resonance Based Sensors (Springer, Berlin, 2006).

  21. 21

    P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article