Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Biosensors based on surface plasmon-enhanced fluorescence spectroscopy (Review)

Abstract

The implementation of surface plasmon-enhanced fluorescence spectroscopy (SPFS) to surface plasmon resonance (SPR) biosensors enables increasing their sensitivity by several orders of magnitude. In SPR-based biosensors, surface plasmons probe the binding of target molecules contained in a liquid sample by their affinity partners attached to a metallic sensor surface. SPR biosensors relying on the detection of refractive index changes allow for direct observation of the binding of large and medium size molecules that produces sufficiently large refractive index changes. In SPR biosensors exploiting SPFS, the capture of fluorophore-labeled molecules to the sensor surface is observed by the detection of fluorescence light emitted from the surface. This technique takes advantage of the enhanced intensity of electromagnetic field accompanied with the resonant excitation of surface plasmons. The interaction with surface plasmons can greatly increase the measured fluorescence signal through enhancing the excitation rate of fluorophores and by more efficient collecting of fluorescence light. SPFS-based biosensors were shown to enable the analysis of samples with extremely low analyte concentrations and the detection of small molecules. In this review, we describe the fundamental principles, implementations, and current state of the art applications of SPFS biosensors. This review focuses on SPFS-based biosensors employing the excitation of surface plasmons on continuous metal-dielectric interfaces.

References

  1. 1

    J. Homola, Chem. Rev. (Washington, D.C.) 108, 462 (2008).

    CAS  Google Scholar 

  2. 2

    R. L. Rich and D. G. Myszka, J. Mol. Recognit. 20, 300 (2007).

    CAS  Article  Google Scholar 

  3. 3

    J. Homola, Surface Plasmon Resonance Based Sensors (Springer, New York, 2006).

    Google Scholar 

  4. 4

    G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. A. Robotti, E. P. Thrush, D. A. Baney, and K. P. Killeen, Sens. Actuators B 127, 341 (2007).

    Article  Google Scholar 

  5. 5

    S. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).

    Article  Google Scholar 

  6. 6

    L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).

    CAS  Article  Google Scholar 

  7. 7

    A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, Anal. Chem. 79, 6697 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Y. Li, H. J. Lee, and R. M. Corn, Anal. Chem. 79, 1082 (2007).

    CAS  Article  Google Scholar 

  9. 9

    T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

    CAS  Article  Google Scholar 

  10. 10

    K. S. Phillips and Q. Cheng, Anal. Bioanal. Chem. 387, 1831 (2007).

    CAS  Article  Google Scholar 

  11. 11

    S. P. Fang, H. J. Lee, A. W. Wark, and R. M. Corn, J. Am. Chem. Soc. 128, 14044 (2006).

    CAS  Article  Google Scholar 

  12. 12

    H. Vaisocherova et al., Biopolymers 82, 394 (2006).

    CAS  Article  Google Scholar 

  13. 13

    X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).

    CAS  Article  Google Scholar 

  14. 14

    D. F. Yao, F. Yu, J. Y. Kim, J. Scholz, P. E. Nielsen, E. K. Sinner, and W. Knoll, Nucleic Acids Res. 32, 177 (2004).

    Article  Google Scholar 

  15. 15

    T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, Adv. Funct. Mater. 12, 575 (2002).

    CAS  Article  Google Scholar 

  16. 16

    C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).

    CAS  Article  Google Scholar 

  17. 17

    H. P. Lehr, M. Reimann, A. Brandenburg, G. Sulz, and H. Klapproth, Anal. Chem. 75, 2414 (2003).

    CAS  Article  Google Scholar 

  18. 18

    G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, Anal. Chim. Acta 469, 49 (2002).

    CAS  Article  Google Scholar 

  19. 19

    J. R. Lakowicz, Plasmonics 1, 5 (2006).

    CAS  Article  Google Scholar 

  20. 20

    M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. (Washington, D.C.) 108, 494 (2008).

    CAS  Google Scholar 

  21. 21

    H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  22. 22

    D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).

    CAS  Article  Google Scholar 

  23. 23

    J. Dostalek, A. Kasry, and W. Knoll, Plasmonics 2, 97 (2007).

    CAS  Article  Google Scholar 

  24. 24

    W. H. Weber and C. F. Eagen, Opt. Lett. 4, 236 (1979).

    CAS  Article  Google Scholar 

  25. 25

    W. Knoll, M. R. Philpott, and J. D. Swalen, J. Chem. Phys. 75, 4795 (1981).

    CAS  Article  Google Scholar 

  26. 26

    S. C. Kitson, W. L. Barnes, and J. R. Sambles, Opt. Commun. 122, 147 (1996).

    CAS  Article  Google Scholar 

  27. 27

    S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. B 52, 11441 (1995).

    CAS  Article  Google Scholar 

  28. 28

    F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005 (2005).

    CAS  Article  Google Scholar 

  29. 29

    N. Calander, Anal. Chem. 76, 2168 (2004).

    CAS  Article  Google Scholar 

  30. 30

    S. C. Kitson, W. L. Barnes, J. R. Sambles, and N. P. K. Cotter, J. Mod. Opt. 43, 573 (1996).

    CAS  Article  Google Scholar 

  31. 31

    K. Vasilev, W. Knoll, and M. Kreiter, J. Chem. Phys. 120, 3439 (2004).

    CAS  Article  Google Scholar 

  32. 32

    R. M. Amos and W. L. Barnes, Phys. Rev. B 55, 7249 (1997).

    CAS  Article  Google Scholar 

  33. 33

    K. Vasilev, F. D. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, J. Chem. Phys. 120, 6701 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Y. Fu and J. R. Lakowicz, Plasmonics 2, 1 (2007).

    Article  Google Scholar 

  35. 35

    J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, Biosens. Bioelectron. 6, 201 (1991).

    CAS  Article  Google Scholar 

  36. 36

    R. Robelek, L. F. Niu, E. L. Schmid, and W. Knoll, Anal. Chem. 76, 6160 (2004).

    CAS  Article  Google Scholar 

  37. 37

    L. Niu and W. Knoll, Anal. Chem. 79, 2695 (2007).

    CAS  Article  Google Scholar 

  38. 38

    E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, Anal. Chem. 76, 6287 (2004).

    CAS  Article  Google Scholar 

  39. 39

    A. Kasry and W. Knoll, Appl. Phys. Lett. 89, 101106 (2006).

    Article  Google Scholar 

  40. 40

    J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, Biochem. Biophys. Res. Commun. 307, 435 (2003).

    CAS  Article  Google Scholar 

  41. 41

    E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, Anal. Biochem. 344, 161 (2005).

    CAS  Article  Google Scholar 

  42. 42

    E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, Biochem. Biophys. Res. Commun. 313, 721 (2004).

    CAS  Article  Google Scholar 

  43. 43

    T. Liebermann and W. Knoll, Langmuir 19, 1567 (2003).

    CAS  Article  Google Scholar 

  44. 44

    F. Yu, B. Persson, S. Lofas, and W. Knoll, J. Am. Chem. Soc. 126, 8902 (2004).

    CAS  Article  Google Scholar 

  45. 45

    G. Stengel and W. Knoll, Nucleic Acids Res. 33, 69 (2005).

    Article  Google Scholar 

  46. 46

    F. Xu, B. Persson, S. Lofas, and W. Knoll, Langmuir 22, 3352 (2006).

    CAS  Article  Google Scholar 

  47. 47

    E. K. Sinner, U. Reuning, F. N. Kok, B. Sacca, L. Moroder, W. Knoll, and D. Oesterhelt, Anal. Biochem. 333, 216 (2004).

    CAS  Article  Google Scholar 

  48. 48

    D. Kambhampati, P. E. Nielsen, and W. Knoll, Biosens. Bioelectron. 16, 1109 (2001).

    CAS  Article  Google Scholar 

  49. 49

    Z. Zhang, W. Knoll, R. Foerch, R. Holcomb, and D. Roitman, Macromolecules 38, 1271 (2005).

    CAS  Article  Google Scholar 

  50. 50

    M. L. M. Vareiro, J. Liu, W. Knoll, K. Zak, D. Williams, and A. T. A. Jenkins, Anal. Chem. 77, 2426 (2005).

    CAS  Article  Google Scholar 

  51. 51

    D. Lössner et al., Anal. Chem. 78, 4524 (2006).

    Article  Google Scholar 

  52. 52

    B. Wiltschi, W. Knoll, and E. K. Sinner, Methods 39, 134 (2006).

    CAS  Article  Google Scholar 

  53. 53

    F. Yu, B. Persson, S. Lofas, and W. Knoll, Anal. Chem. 76, 6765 (2004).

    CAS  Article  Google Scholar 

  54. 54

    N. Yang, X. D. Su, V. Tjong, and W. Knoll, Biosens. Bioelectron. 22, 2700 (2007).

    CAS  Article  Google Scholar 

  55. 55

    F. D. Stefani, W. Knoll, M. Kreiter, X. Zhong, and M. Y. Han, Phys. Rev. B 72, 125304 (2005).

    Article  Google Scholar 

  56. 56

    R. Robelek, F. D. Stefani, and W. Knoll, Phys. Status Solidi A 203, 3468 (2006).

    CAS  Article  Google Scholar 

  57. 57

    T. Liebermann, W. Knoll, P. Sluka, and R. Herrmann, Colloids Surf., A 169, 337 (2000).

    CAS  Article  Google Scholar 

  58. 58

    F. Yu, D. F. Yao, and W. Knoll, Nucleic Acids Res. 32, e75 (2004).

    Article  Google Scholar 

  59. 59

    K. Tawa and W. Knoll, Nucleic Acids Res. 32, 2372 (2004).

    CAS  Article  Google Scholar 

  60. 60

    H. Park, A. Germini, S. Sforza, R. Corradini, R. Marchelli, and W. Knoll, BioInterphases 1, 113 (2006).

    CAS  Article  Google Scholar 

  61. 61

    K. Tawa, D. F. Yao, and W. Knoll, Biosens. Bioelectron. 21, 322 (2005).

    CAS  Article  Google Scholar 

  62. 62

    E. K. Schmidt et al., Biosens. Bioelectron. 13, 585 (1998).

    CAS  Article  Google Scholar 

  63. 63

    T. L. Williams, M. Vareiro, and A. T. A. Jenkins, Langmuir 22, 6473 (2006).

    CAS  Article  Google Scholar 

  64. 64

    S. Löfås and B. Johnsson, J. Chem. Soc., Chem. Commun. 1990, 1526.

  65. 65

    Y. Wang, J. Dostalek, and W. Knoll (unpublished).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dostálek, J., Knoll, W. Biosensors based on surface plasmon-enhanced fluorescence spectroscopy (Review). Biointerphases 3, FD12–FD22 (2008). https://doi.org/10.1116/1.2994688

Download citation