Skip to main content

Journal for Biophysical Chemistry

Biosensors based on surface plasmon-enhanced fluorescence spectroscopy (Review)

Abstract

The implementation of surface plasmon-enhanced fluorescence spectroscopy (SPFS) to surface plasmon resonance (SPR) biosensors enables increasing their sensitivity by several orders of magnitude. In SPR-based biosensors, surface plasmons probe the binding of target molecules contained in a liquid sample by their affinity partners attached to a metallic sensor surface. SPR biosensors relying on the detection of refractive index changes allow for direct observation of the binding of large and medium size molecules that produces sufficiently large refractive index changes. In SPR biosensors exploiting SPFS, the capture of fluorophore-labeled molecules to the sensor surface is observed by the detection of fluorescence light emitted from the surface. This technique takes advantage of the enhanced intensity of electromagnetic field accompanied with the resonant excitation of surface plasmons. The interaction with surface plasmons can greatly increase the measured fluorescence signal through enhancing the excitation rate of fluorophores and by more efficient collecting of fluorescence light. SPFS-based biosensors were shown to enable the analysis of samples with extremely low analyte concentrations and the detection of small molecules. In this review, we describe the fundamental principles, implementations, and current state of the art applications of SPFS biosensors. This review focuses on SPFS-based biosensors employing the excitation of surface plasmons on continuous metal-dielectric interfaces.

References

  1. J. Homola, Chem. Rev. (Washington, D.C.) 108, 462 (2008).

    CAS  Google Scholar 

  2. R. L. Rich and D. G. Myszka, J. Mol. Recognit. 20, 300 (2007).

    Article  CAS  Google Scholar 

  3. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, New York, 2006).

    Book  Google Scholar 

  4. G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. A. Robotti, E. P. Thrush, D. A. Baney, and K. P. Killeen, Sens. Actuators B 127, 341 (2007).

    Article  Google Scholar 

  5. S. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).

    Article  Google Scholar 

  6. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).

    Article  CAS  Google Scholar 

  7. A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, Anal. Chem. 79, 6697 (2007).

    Article  CAS  Google Scholar 

  8. Y. Li, H. J. Lee, and R. M. Corn, Anal. Chem. 79, 1082 (2007).

    Article  CAS  Google Scholar 

  9. T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

    Article  CAS  Google Scholar 

  10. K. S. Phillips and Q. Cheng, Anal. Bioanal. Chem. 387, 1831 (2007).

    Article  CAS  Google Scholar 

  11. S. P. Fang, H. J. Lee, A. W. Wark, and R. M. Corn, J. Am. Chem. Soc. 128, 14044 (2006).

    Article  CAS  Google Scholar 

  12. H. Vaisocherova et al., Biopolymers 82, 394 (2006).

    Article  CAS  Google Scholar 

  13. X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).

    Article  CAS  Google Scholar 

  14. D. F. Yao, F. Yu, J. Y. Kim, J. Scholz, P. E. Nielsen, E. K. Sinner, and W. Knoll, Nucleic Acids Res. 32, 177 (2004).

    Article  Google Scholar 

  15. T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, Adv. Funct. Mater. 12, 575 (2002).

    Article  CAS  Google Scholar 

  16. C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).

    Article  CAS  Google Scholar 

  17. H. P. Lehr, M. Reimann, A. Brandenburg, G. Sulz, and H. Klapproth, Anal. Chem. 75, 2414 (2003).

    Article  CAS  Google Scholar 

  18. G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, Anal. Chim. Acta 469, 49 (2002).

    Article  CAS  Google Scholar 

  19. J. R. Lakowicz, Plasmonics 1, 5 (2006).

    Article  CAS  Google Scholar 

  20. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. (Washington, D.C.) 108, 494 (2008).

    CAS  Google Scholar 

  21. H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  22. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).

    Article  CAS  Google Scholar 

  23. J. Dostalek, A. Kasry, and W. Knoll, Plasmonics 2, 97 (2007).

    Article  CAS  Google Scholar 

  24. W. H. Weber and C. F. Eagen, Opt. Lett. 4, 236 (1979).

    Article  CAS  Google Scholar 

  25. W. Knoll, M. R. Philpott, and J. D. Swalen, J. Chem. Phys. 75, 4795 (1981).

    Article  CAS  Google Scholar 

  26. S. C. Kitson, W. L. Barnes, and J. R. Sambles, Opt. Commun. 122, 147 (1996).

    Article  CAS  Google Scholar 

  27. S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. B 52, 11441 (1995).

    Article  CAS  Google Scholar 

  28. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005 (2005).

    Article  CAS  Google Scholar 

  29. N. Calander, Anal. Chem. 76, 2168 (2004).

    Article  CAS  Google Scholar 

  30. S. C. Kitson, W. L. Barnes, J. R. Sambles, and N. P. K. Cotter, J. Mod. Opt. 43, 573 (1996).

    Article  CAS  Google Scholar 

  31. K. Vasilev, W. Knoll, and M. Kreiter, J. Chem. Phys. 120, 3439 (2004).

    Article  CAS  Google Scholar 

  32. R. M. Amos and W. L. Barnes, Phys. Rev. B 55, 7249 (1997).

    Article  CAS  Google Scholar 

  33. K. Vasilev, F. D. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, J. Chem. Phys. 120, 6701 (2004).

    Article  CAS  Google Scholar 

  34. Y. Fu and J. R. Lakowicz, Plasmonics 2, 1 (2007).

    Article  Google Scholar 

  35. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, Biosens. Bioelectron. 6, 201 (1991).

    Article  CAS  Google Scholar 

  36. R. Robelek, L. F. Niu, E. L. Schmid, and W. Knoll, Anal. Chem. 76, 6160 (2004).

    Article  CAS  Google Scholar 

  37. L. Niu and W. Knoll, Anal. Chem. 79, 2695 (2007).

    Article  CAS  Google Scholar 

  38. E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, Anal. Chem. 76, 6287 (2004).

    Article  CAS  Google Scholar 

  39. A. Kasry and W. Knoll, Appl. Phys. Lett. 89, 101106 (2006).

    Article  Google Scholar 

  40. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, Biochem. Biophys. Res. Commun. 307, 435 (2003).

    Article  CAS  Google Scholar 

  41. E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, Anal. Biochem. 344, 161 (2005).

    Article  CAS  Google Scholar 

  42. E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, Biochem. Biophys. Res. Commun. 313, 721 (2004).

    Article  CAS  Google Scholar 

  43. T. Liebermann and W. Knoll, Langmuir 19, 1567 (2003).

    Article  CAS  Google Scholar 

  44. F. Yu, B. Persson, S. Lofas, and W. Knoll, J. Am. Chem. Soc. 126, 8902 (2004).

    Article  CAS  Google Scholar 

  45. G. Stengel and W. Knoll, Nucleic Acids Res. 33, 69 (2005).

    Article  Google Scholar 

  46. F. Xu, B. Persson, S. Lofas, and W. Knoll, Langmuir 22, 3352 (2006).

    Article  CAS  Google Scholar 

  47. E. K. Sinner, U. Reuning, F. N. Kok, B. Sacca, L. Moroder, W. Knoll, and D. Oesterhelt, Anal. Biochem. 333, 216 (2004).

    Article  CAS  Google Scholar 

  48. D. Kambhampati, P. E. Nielsen, and W. Knoll, Biosens. Bioelectron. 16, 1109 (2001).

    Article  CAS  Google Scholar 

  49. Z. Zhang, W. Knoll, R. Foerch, R. Holcomb, and D. Roitman, Macromolecules 38, 1271 (2005).

    Article  CAS  Google Scholar 

  50. M. L. M. Vareiro, J. Liu, W. Knoll, K. Zak, D. Williams, and A. T. A. Jenkins, Anal. Chem. 77, 2426 (2005).

    Article  CAS  Google Scholar 

  51. D. Lössner et al., Anal. Chem. 78, 4524 (2006).

    Article  Google Scholar 

  52. B. Wiltschi, W. Knoll, and E. K. Sinner, Methods 39, 134 (2006).

    Article  CAS  Google Scholar 

  53. F. Yu, B. Persson, S. Lofas, and W. Knoll, Anal. Chem. 76, 6765 (2004).

    Article  CAS  Google Scholar 

  54. N. Yang, X. D. Su, V. Tjong, and W. Knoll, Biosens. Bioelectron. 22, 2700 (2007).

    Article  CAS  Google Scholar 

  55. F. D. Stefani, W. Knoll, M. Kreiter, X. Zhong, and M. Y. Han, Phys. Rev. B 72, 125304 (2005).

    Article  Google Scholar 

  56. R. Robelek, F. D. Stefani, and W. Knoll, Phys. Status Solidi A 203, 3468 (2006).

    Article  CAS  Google Scholar 

  57. T. Liebermann, W. Knoll, P. Sluka, and R. Herrmann, Colloids Surf., A 169, 337 (2000).

    Article  CAS  Google Scholar 

  58. F. Yu, D. F. Yao, and W. Knoll, Nucleic Acids Res. 32, e75 (2004).

    Article  Google Scholar 

  59. K. Tawa and W. Knoll, Nucleic Acids Res. 32, 2372 (2004).

    Article  CAS  Google Scholar 

  60. H. Park, A. Germini, S. Sforza, R. Corradini, R. Marchelli, and W. Knoll, BioInterphases 1, 113 (2006).

    Article  CAS  Google Scholar 

  61. K. Tawa, D. F. Yao, and W. Knoll, Biosens. Bioelectron. 21, 322 (2005).

    Article  CAS  Google Scholar 

  62. E. K. Schmidt et al., Biosens. Bioelectron. 13, 585 (1998).

    Article  CAS  Google Scholar 

  63. T. L. Williams, M. Vareiro, and A. T. A. Jenkins, Langmuir 22, 6473 (2006).

    Article  CAS  Google Scholar 

  64. S. Löfås and B. Johnsson, J. Chem. Soc., Chem. Commun. 1990, 1526.

  65. Y. Wang, J. Dostalek, and W. Knoll (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dostálek, J., Knoll, W. Biosensors based on surface plasmon-enhanced fluorescence spectroscopy (Review). Biointerphases 3, FD12–FD22 (2008). https://doi.org/10.1116/1.2994688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2994688