Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Biosensors based on surface plasmon-enhanced fluorescence spectroscopy (Review)

Article metrics

Abstract

The implementation of surface plasmon-enhanced fluorescence spectroscopy (SPFS) to surface plasmon resonance (SPR) biosensors enables increasing their sensitivity by several orders of magnitude. In SPR-based biosensors, surface plasmons probe the binding of target molecules contained in a liquid sample by their affinity partners attached to a metallic sensor surface. SPR biosensors relying on the detection of refractive index changes allow for direct observation of the binding of large and medium size molecules that produces sufficiently large refractive index changes. In SPR biosensors exploiting SPFS, the capture of fluorophore-labeled molecules to the sensor surface is observed by the detection of fluorescence light emitted from the surface. This technique takes advantage of the enhanced intensity of electromagnetic field accompanied with the resonant excitation of surface plasmons. The interaction with surface plasmons can greatly increase the measured fluorescence signal through enhancing the excitation rate of fluorophores and by more efficient collecting of fluorescence light. SPFS-based biosensors were shown to enable the analysis of samples with extremely low analyte concentrations and the detection of small molecules. In this review, we describe the fundamental principles, implementations, and current state of the art applications of SPFS biosensors. This review focuses on SPFS-based biosensors employing the excitation of surface plasmons on continuous metal-dielectric interfaces.

References

  1. 1

    J. Homola, Chem. Rev. (Washington, D.C.) 108, 462 (2008).

  2. 2

    R. L. Rich and D. G. Myszka, J. Mol. Recognit. 20, 300 (2007).

  3. 3

    J. Homola, Surface Plasmon Resonance Based Sensors (Springer, New York, 2006).

  4. 4

    G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. A. Robotti, E. P. Thrush, D. A. Baney, and K. P. Killeen, Sens. Actuators B 127, 341 (2007).

  5. 5

    S. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).

  6. 6

    L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).

  7. 7

    A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, Anal. Chem. 79, 6697 (2007).

  8. 8

    Y. Li, H. J. Lee, and R. M. Corn, Anal. Chem. 79, 1082 (2007).

  9. 9

    T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

  10. 10

    K. S. Phillips and Q. Cheng, Anal. Bioanal. Chem. 387, 1831 (2007).

  11. 11

    S. P. Fang, H. J. Lee, A. W. Wark, and R. M. Corn, J. Am. Chem. Soc. 128, 14044 (2006).

  12. 12

    H. Vaisocherova et al., Biopolymers 82, 394 (2006).

  13. 13

    X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).

  14. 14

    D. F. Yao, F. Yu, J. Y. Kim, J. Scholz, P. E. Nielsen, E. K. Sinner, and W. Knoll, Nucleic Acids Res. 32, 177 (2004).

  15. 15

    T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, Adv. Funct. Mater. 12, 575 (2002).

  16. 16

    C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).

  17. 17

    H. P. Lehr, M. Reimann, A. Brandenburg, G. Sulz, and H. Klapproth, Anal. Chem. 75, 2414 (2003).

  18. 18

    G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, Anal. Chim. Acta 469, 49 (2002).

  19. 19

    J. R. Lakowicz, Plasmonics 1, 5 (2006).

  20. 20

    M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. (Washington, D.C.) 108, 494 (2008).

  21. 21

    H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1983).

  22. 22

    D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).

  23. 23

    J. Dostalek, A. Kasry, and W. Knoll, Plasmonics 2, 97 (2007).

  24. 24

    W. H. Weber and C. F. Eagen, Opt. Lett. 4, 236 (1979).

  25. 25

    W. Knoll, M. R. Philpott, and J. D. Swalen, J. Chem. Phys. 75, 4795 (1981).

  26. 26

    S. C. Kitson, W. L. Barnes, and J. R. Sambles, Opt. Commun. 122, 147 (1996).

  27. 27

    S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. B 52, 11441 (1995).

  28. 28

    F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005 (2005).

  29. 29

    N. Calander, Anal. Chem. 76, 2168 (2004).

  30. 30

    S. C. Kitson, W. L. Barnes, J. R. Sambles, and N. P. K. Cotter, J. Mod. Opt. 43, 573 (1996).

  31. 31

    K. Vasilev, W. Knoll, and M. Kreiter, J. Chem. Phys. 120, 3439 (2004).

  32. 32

    R. M. Amos and W. L. Barnes, Phys. Rev. B 55, 7249 (1997).

  33. 33

    K. Vasilev, F. D. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, J. Chem. Phys. 120, 6701 (2004).

  34. 34

    Y. Fu and J. R. Lakowicz, Plasmonics 2, 1 (2007).

  35. 35

    J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, Biosens. Bioelectron. 6, 201 (1991).

  36. 36

    R. Robelek, L. F. Niu, E. L. Schmid, and W. Knoll, Anal. Chem. 76, 6160 (2004).

  37. 37

    L. Niu and W. Knoll, Anal. Chem. 79, 2695 (2007).

  38. 38

    E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, Anal. Chem. 76, 6287 (2004).

  39. 39

    A. Kasry and W. Knoll, Appl. Phys. Lett. 89, 101106 (2006).

  40. 40

    J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, Biochem. Biophys. Res. Commun. 307, 435 (2003).

  41. 41

    E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, Anal. Biochem. 344, 161 (2005).

  42. 42

    E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, Biochem. Biophys. Res. Commun. 313, 721 (2004).

  43. 43

    T. Liebermann and W. Knoll, Langmuir 19, 1567 (2003).

  44. 44

    F. Yu, B. Persson, S. Lofas, and W. Knoll, J. Am. Chem. Soc. 126, 8902 (2004).

  45. 45

    G. Stengel and W. Knoll, Nucleic Acids Res. 33, 69 (2005).

  46. 46

    F. Xu, B. Persson, S. Lofas, and W. Knoll, Langmuir 22, 3352 (2006).

  47. 47

    E. K. Sinner, U. Reuning, F. N. Kok, B. Sacca, L. Moroder, W. Knoll, and D. Oesterhelt, Anal. Biochem. 333, 216 (2004).

  48. 48

    D. Kambhampati, P. E. Nielsen, and W. Knoll, Biosens. Bioelectron. 16, 1109 (2001).

  49. 49

    Z. Zhang, W. Knoll, R. Foerch, R. Holcomb, and D. Roitman, Macromolecules 38, 1271 (2005).

  50. 50

    M. L. M. Vareiro, J. Liu, W. Knoll, K. Zak, D. Williams, and A. T. A. Jenkins, Anal. Chem. 77, 2426 (2005).

  51. 51

    D. Lössner et al., Anal. Chem. 78, 4524 (2006).

  52. 52

    B. Wiltschi, W. Knoll, and E. K. Sinner, Methods 39, 134 (2006).

  53. 53

    F. Yu, B. Persson, S. Lofas, and W. Knoll, Anal. Chem. 76, 6765 (2004).

  54. 54

    N. Yang, X. D. Su, V. Tjong, and W. Knoll, Biosens. Bioelectron. 22, 2700 (2007).

  55. 55

    F. D. Stefani, W. Knoll, M. Kreiter, X. Zhong, and M. Y. Han, Phys. Rev. B 72, 125304 (2005).

  56. 56

    R. Robelek, F. D. Stefani, and W. Knoll, Phys. Status Solidi A 203, 3468 (2006).

  57. 57

    T. Liebermann, W. Knoll, P. Sluka, and R. Herrmann, Colloids Surf., A 169, 337 (2000).

  58. 58

    F. Yu, D. F. Yao, and W. Knoll, Nucleic Acids Res. 32, e75 (2004).

  59. 59

    K. Tawa and W. Knoll, Nucleic Acids Res. 32, 2372 (2004).

  60. 60

    H. Park, A. Germini, S. Sforza, R. Corradini, R. Marchelli, and W. Knoll, BioInterphases 1, 113 (2006).

  61. 61

    K. Tawa, D. F. Yao, and W. Knoll, Biosens. Bioelectron. 21, 322 (2005).

  62. 62

    E. K. Schmidt et al., Biosens. Bioelectron. 13, 585 (1998).

  63. 63

    T. L. Williams, M. Vareiro, and A. T. A. Jenkins, Langmuir 22, 6473 (2006).

  64. 64

    S. Löfås and B. Johnsson, J. Chem. Soc., Chem. Commun. 1990, 1526.

  65. 65

    Y. Wang, J. Dostalek, and W. Knoll (unpublished).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article