Skip to main content

Journal for Biophysical Chemistry

Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates

Abstract

An ex situ nanoparticle DNA detection assay utilizing DNA-modified nanoparticles attached to DNA monolayer gratings on glass substrates is developed. The assay utilizes the simultaneous hybridization of a single stranded DNA (ssDNA) target molecule to both an amine-modified DNA oligonucleotide attached to an amine-reactive glass surface and a thiol-modified DNA oligonucleotide attached to a 13 nm gold nanoparticle. Surface plasmon resonance imaging measurements are used to characterize the two sequential hybridization adsorption processes employed in the assay, and fluorescence microscopy is used to characterize the formation of DNA monolayer gratings via the photopatterning of the amine-reactive glass slides. First order diffraction measurements utilizing incoherent collimated white light source and a 10 nm bandpass filter centered at 600 nm provided quantitative measurements of target ssDNA down to a concentration of 10 pM. Fourth order diffraction measurements employing a HeNe laser and avalanche photodiode were used to detect target ssDNA adsorption from 10 μl of a solution with a concentration as low as 10 fM, corresponding to 60000 target DNA molecules. This simple yet sensitive grating-based nanoparticle DNA detection assay should be directly applicable for genetic screening, mRNA expression assays, and microRNA profiling.

References

  1. 1

    A.-C. Syvanen, Nat. Rev. Genet. 2, 930 (2001).

    Article  CAS  Google Scholar 

  2. 2

    B. W. Kirk, M. Feinsod, R. Favis, R. M. Kliman, and F. Barany, Nucleic Acids Res. 30, 3295 (2002).

    Article  CAS  Google Scholar 

  3. 3

    Y. P. Bao, M. M. Huber, T. Wei, S. S. Marla, J. J. Storhoff, and U. R. Muller, Nucleic Acids Res. 33, e15 (2005).

    Article  Google Scholar 

  4. 4

    D. Gerion, F. Chen, B. Kannan, A. Fu, W. J. Parak, D. J. Chen, A. Majumdar, and A. P. Alivisatos, Anal. Chem. 75, 4766 (2003).

    Article  CAS  Google Scholar 

  5. 5

    Y. Li, A. W. Wark, H. J. Lee, and R. M. Corn, Anal. Chem. 78, 3158 (2006).

    Article  CAS  Google Scholar 

  6. 6

    M. Schena, D. Shalon, R. Davis, and P. Brown, Science 270, 467 (1995).

    Article  CAS  Google Scholar 

  7. 7

    C. Arenz, Angew. Chem. 118, 5170 (2006); Angew. Chem., Int. Ed. 45, 5048 (2006).

    Article  Google Scholar 

  8. 8

    R. W. Carthew, Curr. Opin. Genet. Dev. 16, 203 (2006).

    Article  CAS  Google Scholar 

  9. 9

    A. Rodriguez et al., Science 316, 608 (2007).

    Article  CAS  Google Scholar 

  10. 10

    S. F. Gonzalez, M. J. Krug, M. E. Nielsen, Y. Santos, and D. R. J. Call, J. Clin. Microbiol. 42, 1414 (2004).

    Article  CAS  Google Scholar 

  11. 11

    S. Sengupta, K. Onodera, A. Lai, and U. J. Melcher, J. Clin. Microbiol. 41, 4542 (2003).

    Article  CAS  Google Scholar 

  12. 12

    L. A. Neely et al., Nat. Methods 3, 41 (2006).

    Article  CAS  Google Scholar 

  13. 13

    J. S. Hartig, I. Grune, S. H. Najafi-Shoushtari, and M. Famulok, J. Am. Chem. Soc. 126, 722 (2004).

    Article  CAS  Google Scholar 

  14. 14

    H. J. Lee, A. W. Wark, and R. M. Corn, Langmuir 22, 5241 (2006).

    Article  CAS  Google Scholar 

  15. 15

    H. J. Lee, Y. Li, A. W. Wark, and R. M. Corn, Anal. Chem. 77, 5096 (2005).

    Article  CAS  Google Scholar 

  16. 16

    A. W. Wark, H. J. Lee, and R. M. Corn, Anal. Chem. 77, 3904 (2005).

    Article  CAS  Google Scholar 

  17. 17

    T. T. Goodrich, H. J. Lee, and R. M. Corn, Anal. Chem. 76, 6173 (2004).

    Article  CAS  Google Scholar 

  18. 18

    T. T. Goodrich, H. J. Lee, and R. M. Corn, J. Am. Chem. Soc. 126, 4086 (2004).

    Article  CAS  Google Scholar 

  19. 19

    S. Fang, H. J. Lee, A. W. Wark, and R. M. Corn, J. Am. Chem. Soc. 128, 14044 (2006).

    Article  CAS  Google Scholar 

  20. 20

    F. Yu, D. Yao, and W. Knoll, Nucleic Acids Res. 32, e75 (2004).

    Article  Google Scholar 

  21. 21

    F. Yu, S. Tian, D. Yao, and W. Knoll, Anal. Chem. 76, 3530 (2004).

    Article  CAS  Google Scholar 

  22. 22

    F. Yu and W. Knoll, Anal. Chem. 76, 1971 (2004).

    Article  CAS  Google Scholar 

  23. 23

    A. M. Massary, K. J. Stevenson, and J. T. Hupp, J. Electroanal. Chem. 500, 185 (2001).

    Article  Google Scholar 

  24. 24

    S. Tian, N. R. Armstrong, and W. Knoll, Langmuir 21, 4656 (2005).

    Article  CAS  Google Scholar 

  25. 25

    J. B. Goh, P. L. Tam, R. W. Loo, and M. C. Goh, Anal. Biochem. 313, 262 (2003).

    Article  CAS  Google Scholar 

  26. 26

    R. C. Bailey, J.-M. Nam, C. A. Mirkin, and J. T. Hupp, J. Am. Chem. Soc. 125, 13541 (2003).

    Article  CAS  Google Scholar 

  27. 27

    A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, Anal. Chem. 79, 6697 (2007).

    Article  CAS  Google Scholar 

  28. 28

    J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951).

    Article  Google Scholar 

  29. 29

    R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science 277, 1078 (1997).

    Article  CAS  Google Scholar 

  30. 30

    G. P. Goodrich, M. R. Helfrich, J. J. Overberg, and C. D. Keating, Langmuir 20, 10246 (2004).

    Article  CAS  Google Scholar 

  31. 31

    P. Gong and D. W. Grainger, Surf. Sci. 570, 67 (2004).

    Article  CAS  Google Scholar 

  32. 32

    F. Cheng, L. J. Gamble, D. W. Grainger, and D. G. Castner, Anal. Chem. 79, 8781 (2007).

    Article  CAS  Google Scholar 

  33. 33

    P. Gong, G. M. Harbers, and D. W. Grainger, Anal. Chem. 78, 2342 (2006).

    Article  CAS  Google Scholar 

  34. 34

    E. A. Smith and R. M. Corn, Appl. Spectrosc. 57, 320A (2003).

    Article  CAS  Google Scholar 

  35. 35

    T. Wilkop, Z. Wang, and Q. Cheng, Langmuir 20, 11141 (2004).

    Article  CAS  Google Scholar 

  36. 36

    J. S. Shumaker-Parry and C. T. Campbell, Anal. Chem. 76, 907 (2004).

    Article  CAS  Google Scholar 

  37. 37

    B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, Anal. Chem. 73, 1 (2001).

    Article  CAS  Google Scholar 

  38. 38

    L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).

    Article  CAS  Google Scholar 

  39. 39

    M. C. Howland, A. R. Sapuri-Butti, S. S. Dixit, A. M. Dattelbaum, A. P. Shreve, and A. N. Parikh, J. Am. Chem. Soc. 127, 6752 (2005).

    Article  CAS  Google Scholar 

  40. 40

    M. Nakagawa, N. Nawa, and T. Iyoda, Langmuir 20, 9844 (2004).

    Article  CAS  Google Scholar 

  41. 41

    A. W. Wark, H. J. Lee, and R. M. Corn, in Handbook of Surface Plasmon Resonance, edited by R. B. M. Schasfoort and A. J. Tudos (RSC, Cambridge, UK, 2008), pp. 251–280.

    Google Scholar 

  42. 42

    M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).

    Article  Google Scholar 

  43. 43

    M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. A 3, 1780 (1986).

    Article  CAS  Google Scholar 

  44. 44

    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sendroiu, I.E., Corn, R.M. Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates. Biointerphases 3, FD23–FD29 (2008). https://doi.org/10.1116/1.2994689

Download citation