Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Composite biomolecule/PEDOT materials for neural electrodes

Article metrics

Abstract

Electrodes intended for neural communication must be designed to meet both the electrochemical and biological requirements essential for long term functionality. Metallic electrode materials have been found inadequate to meet these requirements and therefore conducting polymers for neural electrodes have emerged as a field of interest. One clear advantage with polymer electrodes is the possibility to tailor the material to have optimal biomechanical and chemical properties for certain applications. To identify and evaluate new materials for neural communication electrodes, three charged biomolecules, fibrinogen, hyaluronic acid (HA), and heparin are used as counterions in the electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting material is evaluated electrochemically and the amount of exposed biomolecule on the surface is quantified. PEDOT:biomolecule surfaces are also studied with static contact angle measurements as well as scanning electron microscopy and compared to surfaces of PEDOT electrochemically deposited with surfactant counterion polystyrene sulphonate (PSS). Electrochemical measurements show that PEDOT:heparin and PEDOT:HA, both have the electrochemical properties required for neural electrodes, and PEDOT:heparin also compares well to PEDOT:PSS. PEDOT:fibrinogen is found less suitable as neural electrode material.

References

  1. 1

    S. B. Brummer and M. J. Turner, Bioelectrochem. Bioenerg. 2, 13 (1975).

  2. 2

    L. A. Geddes and R. Roeder, Ann. Biomed. Eng. 31, 879 (2003).

  3. 3

    C. Veraart, W. M. Grill, and J. T. Mortimer, IEEE Trans. Biomed. Eng. 40, 640 (1993).

  4. 4

    T. Nyberg, O. Inganas, and H. Jerregard, Biomed. Microdevices 4, 43 (2002).

  5. 5

    T. Nyberg, A. Shimada, and K. Torimitsu, J. Neurosci. Methods 160, 16 (2007).

  6. 6

    Y. H. Xiao, D. C. Martin, X. Y. Cui, and M. Shenai, Appl. Biochem. Biotechnol. 128, 117 (2006).

  7. 7

    J. Y. Yang and D. C. Martin, Sens. Actuators, A 113, 204 (2004).

  8. 8

    K. A. Ludwig, J. D. Uram, J. Y. Yang, D. C. Martin, and D. R. Kipke, J. Neural Eng. 3, 59 (2006).

  9. 9

    S. Ghosh and O. Inganas, Adv. Mater. (Weinheim, Ger.) 11, 1214 (1999).

  10. 10

    S. F. Cogan, P. R. Troyk, J. Ehrlich, T. D. Plante, and D. E. Detlefsen, IEEE Trans. Biomed. Eng. 53, 327 (2006).

  11. 11

    J. Bobacka, A. Lewenstam, and A. Ivaska, J. Electroanal. Chem. 489, 17 (2000).

  12. 12

    A. Lima, P. Schottland, S. Sadki, and C. Chevrot, Synth. Met. 93, 33 (1998).

  13. 13

    D. Kim, S. Richardson-Burns, J. Hendricks, C. Sequera, and D. Martin, Adv. Funct. Mater. 17, 79 (2007).

  14. 14

    N. Sakmeche, S. Aeiyach, J. J. Aaron, M. Jouini, J. C. Lacroix, and P. C. Lacaze, Langmuir 15, 2566 (1999).

  15. 15

    R. Schweiss, J. F. Lubben, D. Johannsmann, and W. Knoll, Electrochim. Acta 50, 2849 (2005).

  16. 16

    L. Pigani, A. Heras, A. Colina, R. Seeber, and J. Lopez-Palacios, Electrochem. Commun. 6, 1192 (2004).

  17. 17

    X. Y. Cui, V. A. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson, and D. C. Martin, J. Biomed. Mater. Res. 56, 261 (2001).

  18. 18

    X. Y. Cui and D. C. Martin, Sens. Actuators B 89, 92 (2003).

  19. 19

    L. Cen, K. G. Neoh, and E. T. Kang, Langmuir 18, 8633 (2002).

  20. 20

    B. Garner, A. J. Hodgson, G. G. Wallace, and P. A. Underwood, J. Mater. Sci.: Mater. Med. 10, 19 (1999).

  21. 21

    D. Zhou, C. O. Too, and G. G. Wallace, React. Funct. Polym. 39, 19 (1999).

  22. 22

    B. Garner, A. Georgevich, A. J. Hodgson, L. Liu, and G. G. Wallace, J. Biomed. Mater. Res. 44, 121 (1999).

  23. 23

    J. H. Collier, J. P. Camp, T. W. Hudson, and C. E. Schmidt, J. Biomed. Mater. Res. 50, 574 (2000).

  24. 24

    H. Yamato, M. Ohwa, and W. Wernet, J. Electroanal. Chem. 397, 163 (1995).

  25. 25

    P. K. Smith, A. K. Mallia, and G. T. Hermanson, Anal. Biochem. 109, 466 (1980).

  26. 26

    I. K. Kang, O. H. Kwon, Y. M. Lee, and Y. K. Sung, Biomaterials 17, 841 (1996).

  27. 27

    N. Blumenkrantz, Clin. Chem. 3, 696 (1957).

  28. 28

    P. Cosman and S. G. Roscoe, Langmuir 20, 1711 (2004).

  29. 29

    P. Bernabeu and A. Caprani, Biomaterials 11, 258 (1990).

  30. 30

    K. B. Lewis and B. D. Ratner, Colloids Surf., B 7, 259 (1996).

  31. 31

    R. D. Meyer, S. E. Cogan, T. H. Nguyen, and R. D. Rauh, IEEE Trans. Neural Syst. Rehabil. Eng. 9, 2 (2001).

  32. 32

    G. C. Li and P. G. Pickup, Phys. Chem. Chem. Phys. 2, 1255 (2000).

  33. 33

    Y. H. Xiao, X. Y. Cui, and D. C. Martin, J. Electroanal. Chem. 573, 43 (2004).

  34. 34

    P. Danielsson, J. Bobacka, and A. Ivaska, J. Solid State Electrochem. 8, 809 (2004).

  35. 35

    Impedance Spectroscopy, 2nd ed., edited by E. Barsoukov and J. R. Macdonald (Wiley, New York, 2005).

  36. 36

    X. M. Ren and P. G. Pickup, J. Electroanal. Chem. 396, 359 (1995).

  37. 37

    T. L. Rose, E. M. Kelliher, and L. S. Robblee, J. Neurosci. Methods 12, 181 (1985).

  38. 38

    A. Branner, R. B. Stein, and R. A. Normann, J. Neurophysiol. 85, 1585 (2001).

  39. 39

    C. Veraart, J. T. Mortimer, J. Delbeke, D. Pins, G. Michaux, A. Vanlierde, S. Parrini, and M. C. Wanet-Defalque, Brain Res. 813, 181 (1998).

  40. 40

    K. Cha, K. W. Horch, and R. A. Normann, Vision Res. 32, 1367 (1992).

  41. 41

    R. W. Thompson, Jr., G. D. Barnett, M. S. Humayun, and G. Dagnelie, Invest. Ophthalmol. Visual Sci. 44, 5035 (2003).

  42. 42

    H. G. Sachs and V. P. Gabel, Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 242, 717 (2004).

  43. 43

    M. S. Humayun, E. de Juan, J. D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, and S. Suzuki, Vision Res. 39, 2569 (1999).

  44. 44

    J. D. Loudin, D. M. Simanovskii, K. Vijayraghavan, C. K. Sramek, A. F. Butterwick, P. Huie, G. Y. McLean, and D. V. Palanker, J. Neural Eng. 4, S72 (2007).

  45. 45

    M. S. Humayun et al., Vision Res. 43, 2573 (2003).

  46. 46

    A. Stett, W. Barth, S. Weiss, H. Haemmerle, and E. Zrenner, Vision Res. 40, 1785 (2000).

  47. 47

    M. Lefebvre, Z. G. Qi, D. Rana, and P. G. Pickup, Chem. Mater. 11, 262 (1999).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article