Skip to main content

Journal for Biophysical Chemistry

Composite biomolecule/PEDOT materials for neural electrodes

Abstract

Electrodes intended for neural communication must be designed to meet both the electrochemical and biological requirements essential for long term functionality. Metallic electrode materials have been found inadequate to meet these requirements and therefore conducting polymers for neural electrodes have emerged as a field of interest. One clear advantage with polymer electrodes is the possibility to tailor the material to have optimal biomechanical and chemical properties for certain applications. To identify and evaluate new materials for neural communication electrodes, three charged biomolecules, fibrinogen, hyaluronic acid (HA), and heparin are used as counterions in the electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting material is evaluated electrochemically and the amount of exposed biomolecule on the surface is quantified. PEDOT:biomolecule surfaces are also studied with static contact angle measurements as well as scanning electron microscopy and compared to surfaces of PEDOT electrochemically deposited with surfactant counterion polystyrene sulphonate (PSS). Electrochemical measurements show that PEDOT:heparin and PEDOT:HA, both have the electrochemical properties required for neural electrodes, and PEDOT:heparin also compares well to PEDOT:PSS. PEDOT:fibrinogen is found less suitable as neural electrode material.

References

  1. S. B. Brummer and M. J. Turner, Bioelectrochem. Bioenerg. 2, 13 (1975).

    Article  CAS  Google Scholar 

  2. L. A. Geddes and R. Roeder, Ann. Biomed. Eng. 31, 879 (2003).

    Article  CAS  Google Scholar 

  3. C. Veraart, W. M. Grill, and J. T. Mortimer, IEEE Trans. Biomed. Eng. 40, 640 (1993).

    Article  CAS  Google Scholar 

  4. T. Nyberg, O. Inganas, and H. Jerregard, Biomed. Microdevices 4, 43 (2002).

    Article  CAS  Google Scholar 

  5. T. Nyberg, A. Shimada, and K. Torimitsu, J. Neurosci. Methods 160, 16 (2007).

    Article  CAS  Google Scholar 

  6. Y. H. Xiao, D. C. Martin, X. Y. Cui, and M. Shenai, Appl. Biochem. Biotechnol. 128, 117 (2006).

    Article  CAS  Google Scholar 

  7. J. Y. Yang and D. C. Martin, Sens. Actuators, A 113, 204 (2004).

    Article  Google Scholar 

  8. K. A. Ludwig, J. D. Uram, J. Y. Yang, D. C. Martin, and D. R. Kipke, J. Neural Eng. 3, 59 (2006).

    Article  Google Scholar 

  9. S. Ghosh and O. Inganas, Adv. Mater. (Weinheim, Ger.) 11, 1214 (1999).

    Article  CAS  Google Scholar 

  10. S. F. Cogan, P. R. Troyk, J. Ehrlich, T. D. Plante, and D. E. Detlefsen, IEEE Trans. Biomed. Eng. 53, 327 (2006).

    Article  Google Scholar 

  11. J. Bobacka, A. Lewenstam, and A. Ivaska, J. Electroanal. Chem. 489, 17 (2000).

    Article  CAS  Google Scholar 

  12. A. Lima, P. Schottland, S. Sadki, and C. Chevrot, Synth. Met. 93, 33 (1998).

    Article  CAS  Google Scholar 

  13. D. Kim, S. Richardson-Burns, J. Hendricks, C. Sequera, and D. Martin, Adv. Funct. Mater. 17, 79 (2007).

    Article  CAS  Google Scholar 

  14. N. Sakmeche, S. Aeiyach, J. J. Aaron, M. Jouini, J. C. Lacroix, and P. C. Lacaze, Langmuir 15, 2566 (1999).

    Article  CAS  Google Scholar 

  15. R. Schweiss, J. F. Lubben, D. Johannsmann, and W. Knoll, Electrochim. Acta 50, 2849 (2005).

    Article  CAS  Google Scholar 

  16. L. Pigani, A. Heras, A. Colina, R. Seeber, and J. Lopez-Palacios, Electrochem. Commun. 6, 1192 (2004).

    Article  CAS  Google Scholar 

  17. X. Y. Cui, V. A. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson, and D. C. Martin, J. Biomed. Mater. Res. 56, 261 (2001).

    Article  CAS  Google Scholar 

  18. X. Y. Cui and D. C. Martin, Sens. Actuators B 89, 92 (2003).

    Article  Google Scholar 

  19. L. Cen, K. G. Neoh, and E. T. Kang, Langmuir 18, 8633 (2002).

    Article  CAS  Google Scholar 

  20. B. Garner, A. J. Hodgson, G. G. Wallace, and P. A. Underwood, J. Mater. Sci.: Mater. Med. 10, 19 (1999).

    Article  CAS  Google Scholar 

  21. D. Zhou, C. O. Too, and G. G. Wallace, React. Funct. Polym. 39, 19 (1999).

    Article  CAS  Google Scholar 

  22. B. Garner, A. Georgevich, A. J. Hodgson, L. Liu, and G. G. Wallace, J. Biomed. Mater. Res. 44, 121 (1999).

    Article  CAS  Google Scholar 

  23. J. H. Collier, J. P. Camp, T. W. Hudson, and C. E. Schmidt, J. Biomed. Mater. Res. 50, 574 (2000).

    Article  CAS  Google Scholar 

  24. H. Yamato, M. Ohwa, and W. Wernet, J. Electroanal. Chem. 397, 163 (1995).

    Article  Google Scholar 

  25. P. K. Smith, A. K. Mallia, and G. T. Hermanson, Anal. Biochem. 109, 466 (1980).

    Article  CAS  Google Scholar 

  26. I. K. Kang, O. H. Kwon, Y. M. Lee, and Y. K. Sung, Biomaterials 17, 841 (1996).

    Article  CAS  Google Scholar 

  27. N. Blumenkrantz, Clin. Chem. 3, 696 (1957).

    CAS  Google Scholar 

  28. P. Cosman and S. G. Roscoe, Langmuir 20, 1711 (2004).

    Article  CAS  Google Scholar 

  29. P. Bernabeu and A. Caprani, Biomaterials 11, 258 (1990).

    Article  CAS  Google Scholar 

  30. K. B. Lewis and B. D. Ratner, Colloids Surf., B 7, 259 (1996).

    Article  CAS  Google Scholar 

  31. R. D. Meyer, S. E. Cogan, T. H. Nguyen, and R. D. Rauh, IEEE Trans. Neural Syst. Rehabil. Eng. 9, 2 (2001).

    Article  CAS  Google Scholar 

  32. G. C. Li and P. G. Pickup, Phys. Chem. Chem. Phys. 2, 1255 (2000).

    Article  CAS  Google Scholar 

  33. Y. H. Xiao, X. Y. Cui, and D. C. Martin, J. Electroanal. Chem. 573, 43 (2004).

    Article  CAS  Google Scholar 

  34. P. Danielsson, J. Bobacka, and A. Ivaska, J. Solid State Electrochem. 8, 809 (2004).

    Article  CAS  Google Scholar 

  35. Impedance Spectroscopy, 2nd ed., edited by E. Barsoukov and J. R. Macdonald (Wiley, New York, 2005).

  36. X. M. Ren and P. G. Pickup, J. Electroanal. Chem. 396, 359 (1995).

    Article  Google Scholar 

  37. T. L. Rose, E. M. Kelliher, and L. S. Robblee, J. Neurosci. Methods 12, 181 (1985).

    Article  CAS  Google Scholar 

  38. A. Branner, R. B. Stein, and R. A. Normann, J. Neurophysiol. 85, 1585 (2001).

    CAS  Google Scholar 

  39. C. Veraart, J. T. Mortimer, J. Delbeke, D. Pins, G. Michaux, A. Vanlierde, S. Parrini, and M. C. Wanet-Defalque, Brain Res. 813, 181 (1998).

    Article  CAS  Google Scholar 

  40. K. Cha, K. W. Horch, and R. A. Normann, Vision Res. 32, 1367 (1992).

    Article  CAS  Google Scholar 

  41. R. W. Thompson, Jr., G. D. Barnett, M. S. Humayun, and G. Dagnelie, Invest. Ophthalmol. Visual Sci. 44, 5035 (2003).

    Article  Google Scholar 

  42. H. G. Sachs and V. P. Gabel, Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 242, 717 (2004).

    Article  Google Scholar 

  43. M. S. Humayun, E. de Juan, J. D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, and S. Suzuki, Vision Res. 39, 2569 (1999).

    Article  CAS  Google Scholar 

  44. J. D. Loudin, D. M. Simanovskii, K. Vijayraghavan, C. K. Sramek, A. F. Butterwick, P. Huie, G. Y. McLean, and D. V. Palanker, J. Neural Eng. 4, S72 (2007).

    Article  CAS  Google Scholar 

  45. M. S. Humayun et al., Vision Res. 43, 2573 (2003).

    Article  Google Scholar 

  46. A. Stett, W. Barth, S. Weiss, H. Haemmerle, and E. Zrenner, Vision Res. 40, 1785 (2000).

    Article  CAS  Google Scholar 

  47. M. Lefebvre, Z. G. Qi, D. Rana, and P. G. Pickup, Chem. Mater. 11, 262 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asplund, M., von Holst, H. & Inganäs, O. Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3, 83–93 (2008). https://doi.org/10.1116/1.2998407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2998407