Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Water at polar and nonpolar solid walls (Review)

Abstract

Recent progress in simulating the properties of interfacial water at hard hydrophobic and hydrophilic surfaces is reviewed and compared to results for the air/water interface. The authors discuss static properties such as the equilibrium contact angle, the depletion layer thickness, and the orientation of interfacial water molecules. Relations between these properties, e.g., the relation between the contact angle and the thickness of the depletion layer which is experimentally observed on hydrophobic surfaces, are emphasized. For a hydrophilic sapphire surface, the authors discuss the influence of geometry and density of polar surface groups on the interfacial water structure. They discuss nonequilibrium effects arising in laminar shear flows, where the classic no-slip hydrodynamic boundary condition is violated at hydrophobic interfaces. They discuss the arising slip and relate it to static properties of the solid hydrophobic/water interface.

References

  1. 1

    P. Ball, Chem. Rev. (Washington, D.C.) 108, 74 (2008).

    CAS  Google Scholar 

  2. 2

    E. W. Lang and H. D. Ludemann, Angew. Chem., Int. Ed. Engl. 21, 315 (1982).

    Article  Google Scholar 

  3. 3

    G. Hummer, S. Garde, A. E. Garcia, M. E. Paulaitis, and L. R. Pratt, J. Phys. Chem. B 102, 10469 (1998).

    Article  CAS  Google Scholar 

  4. 4

    S. Garde, G. Hummer, A. E. Garcia, M. E. Paulaitis, and L. R. Pratt, Phys. Rev. Lett. 77, 4966 (1996).

    Article  CAS  Google Scholar 

  5. 5

    G. Hummer, S. Garde, A. E. Garcia, M. E. Paulaitis, and L. R. Pratt, Proc. Natl. Acad. Sci. U.S.A. 95, 1552 (1998).

    Article  CAS  Google Scholar 

  6. 6

    Y. Levy and J. N. Onuchic, Annu. Rev. Biophys. Biomol. Struct. 35, 389 (2006).

    Article  CAS  Google Scholar 

  7. 7

    G. Hummer, S. Garde, A. E. Garcia, A. Pohorille, and L. R. Pratt, Proc. Natl. Acad. Sci. U.S.A. 93, 8951 (1996).

    Article  CAS  Google Scholar 

  8. 8

    D. Chandler, Nature (London) 437, 640 (2005).

    Article  CAS  Google Scholar 

  9. 9

    N. L. Jarvis and M. A. Scheiman, J. Phys. Chem. 72, 74 (1968).

    Article  CAS  Google Scholar 

  10. 10

    P. Atkins, Physical Chemistry (Oxford University Press, New York, 1998).

    Google Scholar 

  11. 11

    M. Paluch, Adv. Colloid Interface Sci. 84, 27 (2000).

    Article  CAS  Google Scholar 

  12. 12

    V. P. Sokhan and D. J. Tildesley, Mol. Phys. 92, 625 (1997).

    Article  CAS  Google Scholar 

  13. 13

    P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  Google Scholar 

  14. 14

    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 1991).

    Google Scholar 

  15. 15

    J. Genzer and K. Efimenko, Science 290, 2130 (2000).

    Article  CAS  Google Scholar 

  16. 16

    L. Feng et al., Adv. Mater. (Weinheim, Ger.) 14, 1857 (2002).

    Article  CAS  Google Scholar 

  17. 17

    J. Love, L. Estroff, J. Kriebel, R. Nuzzo, and G. Whitesides, Chem. Rev. (Washington, D.C.) 105, 1103 (2005).

    CAS  Google Scholar 

  18. 18

    F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).

    Article  CAS  Google Scholar 

  19. 19

    T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, J. Phys. Chem. B 107, 1345 (2003).

    Article  CAS  Google Scholar 

  20. 20

    A. Härtl,J. A. Garrido, S. Nowy, R. Zimmermann, C. Werner, D. Horinek, R. R. Netz, and M. Stutzmann, J. Am. Chem. Soc. 129, 1287 (2007).

    Article  Google Scholar 

  21. 21

    X. Li, J. Li, M. Eleftheriou, and R. Zhou, J. Am. Chem. Soc. 128, 12439 (2006).

    Article  CAS  Google Scholar 

  22. 22

    R. Steitz,T. Gutberlet, T. Hauss, B. Klösgen, R. Krastev, S. Schemmel, A. C. Simonsen, and G. H. Findenegg, Langmuir 19, 2409 (2003).

    Article  CAS  Google Scholar 

  23. 23

    D. Schwendel,T. Hayashi, R. Dahint, A. Pertsin, M. Grunze, R. Steitz, and F. Schreiber, Langmuir 19, 2284 (2003).

    Article  CAS  Google Scholar 

  24. 24

    D. A. Doshi, E. B. Watkins, J. N. Israelachvili, and J. Majewski, Proc. Natl. Acad. Sci. U.S.A. 102, 9458 (2005).

    Article  CAS  Google Scholar 

  25. 25

    M. Mezger, H. Reichert, S. Schoder, J. Okasinski, H. Schröder, H. Dosch, D. Palms, J. Ralston, and V. Honkimaki, Proc. Natl. Acad. Sci. U.S.A. 103, 18401 (2006).

    Article  CAS  Google Scholar 

  26. 26

    M. Maccarini et al., Langmuir 23, 598 (2007).

    Article  CAS  Google Scholar 

  27. 27

    K. Lum, D. Chandler, and J. Weeks, J. Phys. Chem. B 103, 4570 (1999).

    Article  CAS  Google Scholar 

  28. 28

    D. Huang and D. Chandler, J. Phys. Chem. B 106, 2047 (2002).

    Article  CAS  Google Scholar 

  29. 29

    S. I. Mamatkulov, P. K. Khabibullaev, and R. R. Netz, Langmuir 20, 4756 (2004).

    Article  CAS  Google Scholar 

  30. 30

    J. Janeçek and R. R. Netz, Langmuir 23, 8417 (2007).

    Article  Google Scholar 

  31. 31

    P. Koelsch et al., Colloids Surf., A 303, 110 (2007).

    Article  CAS  Google Scholar 

  32. 32

    B. M. Ocko, A. Dhinojwala, and J. Daillant, Phys. Rev. Lett. 101, 039601 (2008).

    Article  Google Scholar 

  33. 33

    C. Cottin-Bizonne, B. Cross, A. Steinberger, and E. Charlaix, Phys. Rev. Lett. 94, 056102 (2005).

    Article  CAS  Google Scholar 

  34. 34

    O. I. Vinogradova and G. E. Yakubov, Langmuir 19, 1227 (2003).

    Article  CAS  Google Scholar 

  35. 35

    J.-L. Barrat and L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).

    Article  CAS  Google Scholar 

  36. 36

    J.-L. Barrat and L. Bocquet, Faraday Discuss. 112, 119 (1999).

    Article  CAS  Google Scholar 

  37. 37

    H. Stone, A. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).

    Article  Google Scholar 

  38. 38

    J. F. H. Stillinger and A. Ben-Naim, J. Chem. Phys. 47, 4431 (1967).

    Article  CAS  Google Scholar 

  39. 39

    C. A. Croxton, Phys. Lett. 74, 325 (1979).

    Article  Google Scholar 

  40. 40

    M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Phys. Chem. 91, 4873 (1987).

    Article  CAS  Google Scholar 

  41. 41

    M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Chem. Phys. 88, 3281 (1988).

    Article  CAS  Google Scholar 

  42. 42

    M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Chem. Phys. 90, 5211 (1989).

    Article  CAS  Google Scholar 

  43. 43

    C. Y. Lee, J. A. McCammon, and P. J. Rossky, J. Chem. Phys. 80, 4448 (1984).

    Article  CAS  Google Scholar 

  44. 44

    S. H. Lee and P. J. Rossky, J. Chem. Phys. 100, 3334 (1994).

    Article  CAS  Google Scholar 

  45. 45

    A. Wallqvist, Chem. Phys. Lett. 165, 437 (1990).

    Article  CAS  Google Scholar 

  46. 46

    J. R. Grigera, S. G. Kalko, and J. Fischbarg, Langmuir 12, 154 (1996).

    Article  CAS  Google Scholar 

  47. 47

    T. Hayashi, A. J. Pertsin, and M. Grunze, J. Chem. Phys. 117, 6271 (2002).

    Article  CAS  Google Scholar 

  48. 48

    K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, J. Chem. Phys. 94, 2110 (1991).

    Article  CAS  Google Scholar 

  49. 49

    E. Spohr, J. Phys. Chem. 93, 6171 (1989).

    Article  CAS  Google Scholar 

  50. 50

    E. Spohr and K. Heinzinger, Chem. Phys. Lett. 123, 218 (1986).

    Article  CAS  Google Scholar 

  51. 51

    K. Heinzinger and E. Spohr, Electrochim. Acta 34, 1849 (1989).

    Article  CAS  Google Scholar 

  52. 52

    H. Shinto, T. Sakakibara, and K. Higashitani, J. Phys. Chem. B 102, 1974 (1998).

    Article  CAS  Google Scholar 

  53. 53

    H. Heller, M. Schaefer, and K. Schulten, J. Phys. Chem. 97, 8343 (1993).

    Article  CAS  Google Scholar 

  54. 54

    M. A. Wilson and A. Pohorille, J. Am. Chem. Soc. 116, 1490 (1994).

    Article  CAS  Google Scholar 

  55. 55

    O. Berger, O. Edholm, and F. Jahnig, Biophys. J. 72, 2002 (1997).

    Article  CAS  Google Scholar 

  56. 56

    S.-J. Marrink, O. Berger, P. Tieleman, and F. Jähnig, Biophys. J. 74, 931 (1998).

    Article  CAS  Google Scholar 

  57. 57

    A. Ismail, G. Grest, and M. Stevens, Langmuir 23, 8508 (2007).

    Article  CAS  Google Scholar 

  58. 58

    A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).

    Article  CAS  Google Scholar 

  59. 59

    A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).

    Article  CAS  Google Scholar 

  60. 60

    A. Delville, J. Phys. Chem. 97, 9703 (1993).

    Article  CAS  Google Scholar 

  61. 61

    D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic, New York, 2002).

    Google Scholar 

  62. 62

    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (D. Reidel Publishing Company, Dordrecht, 1981), p. 331.

    Google Scholar 

  63. 63

    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  CAS  Google Scholar 

  64. 64

    D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005).

    Article  Google Scholar 

  65. 65

    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  66. 66

    B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).

    Article  CAS  Google Scholar 

  67. 67

    J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).

    Article  CAS  Google Scholar 

  68. 68

    S. Miyamoto and P. Kollman, J. Comput. Chem. 13, 952 (1992).

    Article  CAS  Google Scholar 

  69. 69

    I.-C. Yeh and M. L. Berkowitz, J. Chem. Phys. 111, 3155 (1999).

    Article  CAS  Google Scholar 

  70. 70

    J. Janeçek, H. Krienke, and G. Schmeer, J. Phys. Chem. B 110, 6916 (2006).

    Article  Google Scholar 

  71. 71

    T. R. Jensen, M. Ø. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer, and T. Bjørnholm, Phys. Rev. Lett. 90, 086101 (2003).

    Article  Google Scholar 

  72. 72

    M. Ø. Jensen, O. G. Mouritsen, and G. H. Peters, J. Chem. Phys. 120, 9729 (2004).

    Article  CAS  Google Scholar 

  73. 73

    A. Pertsin and M. Grunze, J. Chem. Phys. 125, 114707 (2006).

    Article  Google Scholar 

  74. 74

    M. J. de Ruijter, T. D. Blake, and J. De Coninck, Langmuir 15, 7836 (1999).

    Article  Google Scholar 

  75. 75

    J. S. Huang and W. W. Webb, J. Chem. Phys. 50, 3677 (1969).

    Article  CAS  Google Scholar 

  76. 76

    D. Beysens and M. Robert, J. Chem. Phys. 87, 3056 (1987). or]77 D. M.Huang, C. Sendner, D. Horinek, R. R. Netz, and L. Bocquet (unpublished).

    Article  CAS  Google Scholar 

  77. 78

    W. R. P. Scott et al., J. Phys. Chem. A 103, 3596 (1999).

    Article  CAS  Google Scholar 

  78. 79

    W. L. Jorgensen, J. D. Madura, and C. J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984).

    Article  CAS  Google Scholar 

  79. 80

    W. L. Jorgensen, J. Phys. Chem. 90, 1276 (1986).

    Article  CAS  Google Scholar 

  80. 81

    K. C. Hass, W. F. Schneider, A. Curioni, and W. Andreoni, J. Phys. Chem. B 104, 5527 (2000). or]82M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, (unpublished).

    Article  CAS  Google Scholar 

  81. 83

    P. Jungwirth and D. J. Tobias, Chem. Rev. (Washington, D.C.) 106, 1259 (2006).

    CAS  Google Scholar 

  82. 84

    T. M. Chang and L. X. Dang, Chem. Rev. (Washington, D.C.) 106, 1305 (2006).

    CAS  Google Scholar 

  83. 85

    J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1982).

    Google Scholar 

  84. 86

    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).

    Article  CAS  Google Scholar 

  85. 87

    W. D. Cornell et al., J. Am. Chem. Soc. 117, 5179 (1995).

    Article  CAS  Google Scholar 

  86. 88

    J. Alejandre, D. J. Tildesley, and G. A. Chapela, J. Chem. Phys. 102, 4574 (1995).

    Article  CAS  Google Scholar 

  87. 89

    D. Paschek, J. Chem. Phys. 120, 6674 (2004).

    Article  CAS  Google Scholar 

  88. 90

    D. Horinek and R. R. Netz, Phys. Rev. Lett. 99, 226104 (2007).

    Article  Google Scholar 

  89. 91

    D. Horinek, A. Serr, D. J. Bonthuis, M. Boström, W. Kunz, and R. R. Netz, Langmuir 24, 1271 (2008).

    Article  CAS  Google Scholar 

  90. 92

    E. Lauga, M. P. Brenner, and H. A. Stone, in Handbook of Experimental Fluid Dynamics, edited by C. Tropea, A. Yarin, and J. F. Foss(Springer, New York, 2005).

    Google Scholar 

  91. 93

    L. Bocquet and J. L. Barrat, Soft Matter 3, 685 (2007).

    Article  CAS  Google Scholar 

  92. 94

    J. Chowdhary and B. Ladanyi, J. Phys. Chem. B 110, 15442 (2006).

    Article  CAS  Google Scholar 

  93. 95

    M. L. Berkowitz and K. Raghavan, Langmuir 7, 1042 (1991).

    Article  CAS  Google Scholar 

  94. 96

    A. Serr, D. Horinek, and R. R. Netz, J. Am. Chem. Soc. 130, 12408 (2008).

    Article  CAS  Google Scholar 

  95. 97

    D. Horinek et al., Proc. Natl. Acad. Sci. U.S.A. 105, 2842 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sedlmeier, F., Janecek, J., Sendner, C. et al. Water at polar and nonpolar solid walls (Review). Biointerphases 3, FC23–FC39 (2008). https://doi.org/10.1116/1.2999559

Download citation