Skip to main content

Journal for Biophysical Chemistry

Collective molecular dynamics in proteins and membranes (Review)

Abstract

The understanding of dynamics and functioning of biological membranes and, in particular, of membrane embedded proteins is one of the most fundamental problems and challenges in modern biology and biophysics. In particular, the impact of membrane composition and properties and of structure and dynamics of the surrounding hydration water on protein function is an upcoming topic, which can be addressed by modern experimental and computational techniques. Correlated molecular motions might play a crucial role for the understanding of, for instance, transport processes and elastic properties, and might be relevant for protein function. Experimentally that involves determining dispersion relations for the different molecular components, i.e., the length scale dependent excitation frequencies and relaxation rates. Only very few experimental techniques can access dynamical properties in biological materials on the nanometer scale, and resolve dynamics of lipid molecules, hydration water molecules, and proteins and the interaction between them. In this context, inelastic neutron scattering turned out to be a very powerful tool to study dynamics and interactions in biomolecular materials up to relevant nanosecond time scales and down to the nanometer length scale. The author reviews and discusses inelastic neutron scattering experiments to study membrane elasticity and protein-protein interactions of membrane embedded proteins.

References

  1. M. C. Rheinstädter, T. Seydel, W. Häußler, and T. Salditt, J. Vac. Sci. Technol. A 24, 1191 (2006).

    Article  Google Scholar 

  2. Structure and Dynamics of Membranes, Handbook of Biological Physics Vol. 1, edited by R. Lipowsky and E. Sackmann (Elsevier, Amsterdam, 1995).

    Google Scholar 

  3. T. Salditt, Curr. Opin. Colloid Interface Sci. 5, 19 (2000).

    Article  CAS  Google Scholar 

  4. S. Krueger, Curr. Opin. Colloid Interface Sci. 6, 111 (2001).

    Article  CAS  Google Scholar 

  5. T. Salditt, J. Phys.: Condens. Matter 17, R287 (2005).

    Article  CAS  Google Scholar 

  6. H. Frauenfelder, S. Sligar, and P. Wolynes, Science 254, 1598 (1991).

    Article  CAS  Google Scholar 

  7. P. Fenimore, H. Frauenfelder, B. McMahon, and R. Young, Proc. Natl. Acad. Sci. U.S.A. 101, 14408 (2004).

    Article  CAS  Google Scholar 

  8. T. Bayerl, Curr. Opin. Colloid Interface Sci. 5, 232 (2000).

    Article  CAS  Google Scholar 

  9. M. Tarek, D. Tobias, S.-H. Chen, and M. Klein, Phys. Rev. Lett. 87, 238101 (2001).

    Article  CAS  Google Scholar 

  10. J. S. Hub, T. Salditt, M. C. Rheinstädter, and B. L. de Groot, Biophys. J. 93, 3156 (2007).

    Article  CAS  Google Scholar 

  11. {au{gnP.} {pade} {fnGennes}}, {btThe Physics of Liquid Crystals} ({pmClarendon}, {plOxford}, {dy1974}).

  12. E. Kats, V. Lebedev, and A. Muratov, Phys. Rep. 228, 1 (1993).

    Article  CAS  Google Scholar 

  13. R. Ribotta, D. Salin, and G. Durand, Phys. Rev. Lett. 32, 6 (1974).

    Article  CAS  Google Scholar 

  14. M. C. Rheinstädter, W. Häussler, and T. Salditt, Phys. Rev. Lett. 97, 048103 (2006).

    Article  Google Scholar 

  15. M. C. Rheinstädter, K. Schmalzl, K. Wood, and D. Strauch, e-print arXiv:0803.0959.

  16. S. König, W. Pfeiffer, T. Bayerl, D. Richter, and E. Sackmann, J. Chem. Phys. 2, 1589 (1992).

    Google Scholar 

  17. S. König, E. Sackmann, D. Richter, R. Zorn, C. Carlile, and T. Bayerl, J. Chem. Phys. 100, 3307 (1994).

    Article  Google Scholar 

  18. S. König, T. Bayerl, G. Coddens, D. Richter, and E. Sackmann, Biophys. J. 68, 1871 (1995).

    Article  Google Scholar 

  19. W. Pfeiffer, T. Henkel, E. Sackmann, and W. Knorr, Europhys. Lett. 8, 201 (1989).

    Article  CAS  Google Scholar 

  20. W. Pfeiffer, S. König, J. Legrand, T. Bayerl, D. Richter, and E. Sackmann, Europhys. Lett. 23, 457 (1993).

    Article  CAS  Google Scholar 

  21. E. Lindahl and O. Edholm, Biophys. J. 79, 426 (2000).

    Article  CAS  Google Scholar 

  22. A. Nevzorov and M. Brown, J. Chem. Phys. 107, 10288 (1997).

    Article  CAS  Google Scholar 

  23. M. Bloom and T. Bayerl, Can. J. Phys. 73, 687 (1995).

    Article  CAS  Google Scholar 

  24. T. Takeda, Y. Kawabata, H. Seto, S. Komura, S. Gosh, M. Nagao, and D. Okuhara, J. Phys. Chem. Solids 60, 1375 (1999).

    Article  CAS  Google Scholar 

  25. R. Hirn, T. Bayerl, J. Rädler, and E. Sackmann, Faraday Discuss. 111, 17 (1999).

    Article  Google Scholar 

  26. R. B. Hirn and T. M. Bayerl, Phys. Rev. E 59, 5987 (1999).

    Article  CAS  Google Scholar 

  27. M. F. Hildenbrand and T. M. Bayerl, Biophys. J. 88, 3360 (2005).

    Article  CAS  Google Scholar 

  28. S. Chen, C. Liao, H. Huang, T. Weiss, M. Bellisent-Funel, and F. Sette, Phys. Rev. Lett. 86, 740 (2001).

    Article  CAS  Google Scholar 

  29. M. C. Rheinstädter, C. Ollinger, G. Fragneto, F. Demmel, and T. Salditt, Phys. Rev. Lett. 93, 108107 (2004).

    Article  Google Scholar 

  30. {btNeutron Spin Echo}, edited by {ei{gnF.} {fnMezei}} ({pmSpringer}, {plBerlin}, {dy1980}).

  31. A. Caillé, C. R. Seances Acad. Sci., Ser. B 274, 891 (1972).

    Google Scholar 

  32. N. Lei, C. Safinya, and R. Bruinsma, J. Phys. II 5, 1155 (1995).

    Article  CAS  Google Scholar 

  33. Y. Lyatskaya, Y. Liu, S. Tristram-Nagle, J. Katsaras, and J. F. Nagle, Phys. Rev. E 63, 011907 (2000).

    Article  Google Scholar 

  34. T. Salditt, M. Vogel, and W. Fenzl, Phys. Rev. Lett. 90, 178101 (2003).

    Article  CAS  Google Scholar 

  35. H. Bary-Soroker and H. Diamant, Europhys. Lett. 73, 871 (2006).

    Article  CAS  Google Scholar 

  36. H. Bary-Soroker and H. Diamant, Phys. Rev. E 76, 042401 (2007).

    Article  Google Scholar 

  37. C. Ollinger, D. Constantin, J. Seeger, and T. Salditt, Europhys. Lett. 71, 311 (2005).

    Article  CAS  Google Scholar 

  38. H. I. Petrache, N. Gouliaev, S. Tristram-Nagle, R. Zhang, R. M. Suter, and J. F. Nagle, Phys. Rev. E 57, 7014 (1998).

    Article  CAS  Google Scholar 

  39. G. Pabst, J. Katsaras, V. A. Raghunathan, and M. Rappolt, Langmuir 19, 1716 (2003).

    Article  CAS  Google Scholar 

  40. A. Schäfer, T. Salditt, and M. C. Rheinstädter, Phys. Rev. E 77, 021905 (2008).

    Article  Google Scholar 

  41. F. Chen, W. Hung, and H. Huang, Phys. Rev. Lett. 79, 4026 (1997).

    Article  CAS  Google Scholar 

  42. J. Nagle, H. Petrache, N. Gouliaev, S. Tristram-Nagle, Y. Liu, R. Suter, and K. Gawrisch, Phys. Rev. E 58, 7769 (1998).

    Article  CAS  Google Scholar 

  43. P. Mason, J. Nagle, R. Epand, and J. Katsaras, Phys. Rev. E 63, 030902(R) (2001).

    Article  Google Scholar 

  44. A. F. Xie, R. Yamada, A. A. Gewirth, and S. Granick, Phys. Rev. Lett. 89, 246103 (2002).

    Article  Google Scholar 

  45. F. Tokumasu, A. Jin, and A. Dvorak, J. Electron Microsc. 51, 1 (2002).

    Article  CAS  Google Scholar 

  46. G. Pabst, H. Amenitsch, D. Kharakoz, P. Laggner, and M. Rappolt, Phys. Rev. E 70, 021908 (2004).

    Article  CAS  Google Scholar 

  47. V. Kurkal-Siebert, R. Agarwal, and J. C. Smith, Phys. Rev. Lett. 100, 138102 (2008).

    Article  Google Scholar 

  48. L. Meinhold, J. C. Smith, A. Kitao, and A. H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 104, 17261 (2007).

    Article  CAS  Google Scholar 

  49. U. Haupts, J. Tittor, and D. Oesterhelt, Annu. Rev. Biophys. Biomol. Struct. 28, 367 (1999).

    Article  CAS  Google Scholar 

  50. P. A. Kralchevsky, Adv. Biophys. 34, 25 (1997).

    Article  CAS  Google Scholar 

  51. K. Bohinc, V. Kralj-Iglič, and S. May, J. Chem. Phys. 119, 7435 (2003).

    Article  CAS  Google Scholar 

  52. P. Biscari and F. Bisi, Eur. Phys. J. E 6, 381 (2002)

    Google Scholar 

  53. P. Lagüe, M. J. Zuckermann, and B. Roux, Biophys. J. 81, 276 (2001).

    Article  Google Scholar 

  54. N. Dan, P. Pincus, and S. Safran, Langmuir 9, 2768 (1993).

    Article  CAS  Google Scholar 

  55. J. Baudry, E. Tajkhorshid, F. Molnar, J. Phillips, and K. Schulten, J. Phys. Chem. 105, 905 (2001).

    CAS  Google Scholar 

  56. J. F. Hunt, P. D. McCrea, G. Zaccaï, and D. M. Engelman, J. Mol. Biol. 273, 1004 (1997).

    Article  CAS  Google Scholar 

  57. The molecular weight of a BR monomer is 26.9 kDa Ref. 56. Because 1 kg=6.0221×1026 Dalton, the BR trimer thus weighs m tr =1.34 ×10−22 kg.

  58. http://commons.wikimedia.org/wiki/Image:Cell_membrane_detailed_ diagram.svg

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rheinstädter, M.C. Collective molecular dynamics in proteins and membranes (Review). Biointerphases 3, FB83–FB90 (2008). https://doi.org/10.1116/1.3007992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3007992