Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Nanostructure of supported lipid bilayers in water

Article metrics

  • 602 Accesses

  • 7 Citations

Abstract

Biologically functional supported lipid bilayers (SLBs) used in the rising field of nanobiotechnology require fine tuning of the SLB interface with the substrate, e.g., a sensor surface. Depending on the application, membrane functionality implies a homogeneous and dense bilayer and a certain degree of diffusivity in order to allow for a rearrangement in response to, e.g., protein binding. Here, progress in the preparation, characterization, and application of SLBs obtained in the past three to five years are highlighted. Synchrotron techniques, which allow to reveal structural features within the membrane on a length scale of 0.5 nm are discussed in more detail, as well as the relation of structural features to dynamical membrane properties obtained by complementary optical techniques.

References

  1. 1

    S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).

  2. 2

    B. Alberts, Molecular Biology of the Cell (Garland Science, New York, 2002).

  3. 3

    W. L. Smith, R. M. Garavito, and S. Ferguson-Miller, J. Biol. Chem. 276, 32393 (2001).

  4. 4

    K. Simons and E. Ikonen, Nature (London) 387, 569 (1997).

  5. 5

    L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).

  6. 6

    E. Sackmann, Science 271, 43 (1996).

  7. 7

    Y. Zhang, S. P. Venkatachalan, H. Xu, X. Xu, P. Joshi, H. F. Ji, and M. Schulte, Biosens. Bioelectron. 19, 1473 (2004).

  8. 8

    M. P. Jonsson, P. Jonsson, A. B. Dahlin, and F. Höök, Nano Lett. 7, 3462 (2007).

  9. 9

    C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

  10. 10

    K. Kastl, M. Ross, V. Gerke, and C. Steinem, Biochemistry 41, 10087 (2002).

  11. 11

    T. Oikawa, H. Yamaguchi, T. Itoh, M. Kato, T. Ijuin, D. Yamazaki, S. Suetsugu, and T. Takenawa, Nat. Cell Biol. 6, 420 (2004).

  12. 12

    M. G. Nikolaides, S. Rauschenbach, S. Luber, K. Buchholz, M. Tornow, G. Abstreiter, and A. R. Bausch, ChemPhysChem 4, 1104 (2003).

  13. 13

    C. E. Miller, J. Majewski, T. Gog, and T. L. Kuhl, Phys. Rev. Lett. 94, 238104 (2005).

  14. 14

    E. Novakova, K. Giewekemeyer, and T. Salditt, Phys. Rev. E 74, 051911 (2006).

  15. 15

    C. E. Miller, J. Majewski, E. B. Watkins, D. J. Mulder, T. Gog, and T. L. Kuhl, Phys. Rev. Lett. 100, 058103 (2008).

  16. 16

    C. W. Meuse, S. Krueger, C. F. Majkrzak, J. A. Dura, J. Fu, J. T. Connor, and A. L. Plant, Biophys. J. 74, 1388 (1998).

  17. 17

    C. Delajon, T. Gutberlet, R. Steitz, H. Mohwald, and R. Krastev, Langmuir 21, 8509 (2005).

  18. 18

    S. Lecuyer, G. Fragneto, and T. Charitat, Eur. Phys. J. E 21, 153 (2006).

  19. 19

    L. G. Parratt, Phys. Rev. 95, 359 (1954).

  20. 20

    J. B. Klauda, N. Kuerka, B. R. Brooks, R. W. Pastor, and J. F. Nagle, Biophys. J. 90, 2796 (2006).

  21. 21

    T. Rohr, D. F. Ogletree, J. M. J. Svec, and F. Fréchet, Adv. Funct. Mater. 13, 264 (2003).

  22. 22

    C. Reich, M. B. Hochrein, B. Krause, and B. Nickel, Rev. Sci. Instrum. 76, 095103 (2005).

  23. 23

    ibidi Integrated Biodiagnostics.

  24. 24

    M. Hochrein, C. Reich, B. Krause, J. O. Rädler, and B. Nickel, Langmuir 22, 538 (2006).

  25. 25

    R. v. Klitzing, Phys. Chem. Chem. Phys. 8, 5012 (2006).

  26. 26

    P. A. Neff, A. Naji, C. Ecker, B. Nickel, R. Von Klitzing, and A. R. Bausch, Macromolecules 39, 463 (2006).

  27. 27

    M. A. Polizzi, R. M. Plocinik, and G. J. Simpson, J. Am. Chem. Soc. 126, 5001 (2004).

  28. 28

    E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).

  29. 29

    T. Eichinger, Diploma thesis, Ludwig-Maximilians-Universitat, 2006.

  30. 30

    E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, Langmuir 17, 5605 (2001).

  31. 31

    R. L. C. Wang, H. J. Kreuzer, and M. Grunze, J. Phys. Chem. B 101, 9767 (1997).

  32. 32

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

  33. 33

    S. R. Wasserman, Y. T. Tao, and G. M. Whitesides, Langmuir 5, 1074 (1989).

  34. 34

    M. Calistri-Yeh, E. J. Kramer, R. Sharma, W. Zhao, M. H. Rafailovich, J. Sokolov, and J. D. Brock, Langmuir 12, 2747 (1996).

  35. 35

    C. Daniel, K. E. Sohn, T. E. Mates, E. J. Kramer, J. O. Rädler, E. Sackmann, B. Nickel, and L. Andruzzi, BioInterphases 2, 109 (2007).

  36. 36

    C. Reich, P. A. Neff, A. R. Bausch, J. O. Rädler, and B. Nickel, Phys. Status Solidi A 203, 3463 (2006).

  37. 37

    F. Dumas, M. C. Lebrun, and J.-F. Tocanne, FEBS Lett. 458, 271 (1999).

  38. 38

    M. D. Marcus, Biophys. J. 94, L32 (2008).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article