Skip to main content

Journal for Biophysical Chemistry

Nanostructure of supported lipid bilayers in water

Abstract

Biologically functional supported lipid bilayers (SLBs) used in the rising field of nanobiotechnology require fine tuning of the SLB interface with the substrate, e.g., a sensor surface. Depending on the application, membrane functionality implies a homogeneous and dense bilayer and a certain degree of diffusivity in order to allow for a rearrangement in response to, e.g., protein binding. Here, progress in the preparation, characterization, and application of SLBs obtained in the past three to five years are highlighted. Synchrotron techniques, which allow to reveal structural features within the membrane on a length scale of 0.5 nm are discussed in more detail, as well as the relation of structural features to dynamical membrane properties obtained by complementary optical techniques.

References

  1. S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).

    Article  CAS  Google Scholar 

  2. B. Alberts, Molecular Biology of the Cell (Garland Science, New York, 2002).

    Google Scholar 

  3. W. L. Smith, R. M. Garavito, and S. Ferguson-Miller, J. Biol. Chem. 276, 32393 (2001).

    Article  CAS  Google Scholar 

  4. K. Simons and E. Ikonen, Nature (London) 387, 569 (1997).

    Article  CAS  Google Scholar 

  5. L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).

    Article  CAS  Google Scholar 

  6. E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  7. Y. Zhang, S. P. Venkatachalan, H. Xu, X. Xu, P. Joshi, H. F. Ji, and M. Schulte, Biosens. Bioelectron. 19, 1473 (2004).

    Article  CAS  Google Scholar 

  8. M. P. Jonsson, P. Jonsson, A. B. Dahlin, and F. Höök, Nano Lett. 7, 3462 (2007).

    Article  CAS  Google Scholar 

  9. C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

    Article  CAS  Google Scholar 

  10. K. Kastl, M. Ross, V. Gerke, and C. Steinem, Biochemistry 41, 10087 (2002).

    Article  CAS  Google Scholar 

  11. T. Oikawa, H. Yamaguchi, T. Itoh, M. Kato, T. Ijuin, D. Yamazaki, S. Suetsugu, and T. Takenawa, Nat. Cell Biol. 6, 420 (2004).

    Article  CAS  Google Scholar 

  12. M. G. Nikolaides, S. Rauschenbach, S. Luber, K. Buchholz, M. Tornow, G. Abstreiter, and A. R. Bausch, ChemPhysChem 4, 1104 (2003).

    Article  CAS  Google Scholar 

  13. C. E. Miller, J. Majewski, T. Gog, and T. L. Kuhl, Phys. Rev. Lett. 94, 238104 (2005).

    Article  CAS  Google Scholar 

  14. E. Novakova, K. Giewekemeyer, and T. Salditt, Phys. Rev. E 74, 051911 (2006).

    Article  Google Scholar 

  15. C. E. Miller, J. Majewski, E. B. Watkins, D. J. Mulder, T. Gog, and T. L. Kuhl, Phys. Rev. Lett. 100, 058103 (2008).

    Article  CAS  Google Scholar 

  16. C. W. Meuse, S. Krueger, C. F. Majkrzak, J. A. Dura, J. Fu, J. T. Connor, and A. L. Plant, Biophys. J. 74, 1388 (1998).

    Article  CAS  Google Scholar 

  17. C. Delajon, T. Gutberlet, R. Steitz, H. Mohwald, and R. Krastev, Langmuir 21, 8509 (2005).

    Article  CAS  Google Scholar 

  18. S. Lecuyer, G. Fragneto, and T. Charitat, Eur. Phys. J. E 21, 153 (2006).

    Article  CAS  Google Scholar 

  19. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  20. J. B. Klauda, N. Kuerka, B. R. Brooks, R. W. Pastor, and J. F. Nagle, Biophys. J. 90, 2796 (2006).

    Article  CAS  Google Scholar 

  21. T. Rohr, D. F. Ogletree, J. M. J. Svec, and F. Fréchet, Adv. Funct. Mater. 13, 264 (2003).

    Article  CAS  Google Scholar 

  22. C. Reich, M. B. Hochrein, B. Krause, and B. Nickel, Rev. Sci. Instrum. 76, 095103 (2005).

    Article  Google Scholar 

  23. ibidi Integrated Biodiagnostics.

  24. M. Hochrein, C. Reich, B. Krause, J. O. Rädler, and B. Nickel, Langmuir 22, 538 (2006).

    Article  CAS  Google Scholar 

  25. R. v. Klitzing, Phys. Chem. Chem. Phys. 8, 5012 (2006).

    Article  Google Scholar 

  26. P. A. Neff, A. Naji, C. Ecker, B. Nickel, R. Von Klitzing, and A. R. Bausch, Macromolecules 39, 463 (2006).

    Article  CAS  Google Scholar 

  27. M. A. Polizzi, R. M. Plocinik, and G. J. Simpson, J. Am. Chem. Soc. 126, 5001 (2004).

    Article  CAS  Google Scholar 

  28. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).

    Article  CAS  Google Scholar 

  29. T. Eichinger, Diploma thesis, Ludwig-Maximilians-Universitat, 2006.

  30. E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, Langmuir 17, 5605 (2001).

    Article  CAS  Google Scholar 

  31. R. L. C. Wang, H. J. Kreuzer, and M. Grunze, J. Phys. Chem. B 101, 9767 (1997).

    Article  CAS  Google Scholar 

  32. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    Article  CAS  Google Scholar 

  33. S. R. Wasserman, Y. T. Tao, and G. M. Whitesides, Langmuir 5, 1074 (1989).

    Article  CAS  Google Scholar 

  34. M. Calistri-Yeh, E. J. Kramer, R. Sharma, W. Zhao, M. H. Rafailovich, J. Sokolov, and J. D. Brock, Langmuir 12, 2747 (1996).

    Article  CAS  Google Scholar 

  35. C. Daniel, K. E. Sohn, T. E. Mates, E. J. Kramer, J. O. Rädler, E. Sackmann, B. Nickel, and L. Andruzzi, BioInterphases 2, 109 (2007).

    Article  CAS  Google Scholar 

  36. C. Reich, P. A. Neff, A. R. Bausch, J. O. Rädler, and B. Nickel, Phys. Status Solidi A 203, 3463 (2006).

    Article  CAS  Google Scholar 

  37. F. Dumas, M. C. Lebrun, and J.-F. Tocanne, FEBS Lett. 458, 271 (1999).

    Article  CAS  Google Scholar 

  38. M. D. Marcus, Biophys. J. 94, L32 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickel, B. Nanostructure of supported lipid bilayers in water. Biointerphases 3, FC40–FC46 (2008). https://doi.org/10.1116/1.3007998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3007998