Skip to main content

Journal for Biophysical Chemistry

Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review)

Abstract

The resonance conditions for excitation of propagating surface plasmons at planar metal/dielectric interfaces and localized surface plasmons associated with metal nanostructures are both sensitive to changes in the interfacial refractive index. This has made these phenomena increasingly popular as transducer principles in label-free sensing of biomolecular recognition reactions. In this article, the authors review the recent progress in the field of nanoplasmonic bioanalytical sensing in general, but set particular focus on certain unique possibilities provided by short-range ordered nanoholes in thin metal films. Although the latter structures are formed in continuous metal films, while nanoparticles are discrete entities, these two systems display striking similarities with respect to sensing capabilities, including bulk sensitivities, and the localization of the electromagnetic fields. In contrast, periodic arrays of nanoholes formed in metal films, most known for their ability to provide wavelength-tuned enhanced transmission, show more similarities with conventional propagating surface plasmon resonance. However, common for both short-range ordered and periodic nanoholes formed in metal films is that the substrate is electrically conductive. Some of the possibilities that emerge from sensor templates that are both electrically conductive and plasmon active are discussed and illustrated using recent results on synchronized nanoplasmonic and quartz crystal microbalance with dissipation monitoring of supported lipid bilayer formation and subsequent biomolecular recognition reactions. Besides the fact that this combination of techniques provides an independent measure of biomolecular structural changes, it is also shown to contribute with a general means to quantify the response from nanoplasmonic sensors in terms of bound molecular mass.

References

  1. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).

    Article  CAS  Google Scholar 

  2. H. A. Atwater, Sci. Am. 296, 56 (2007).

    Article  CAS  Google Scholar 

  3. S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, Nano Lett. 7, 1338 (2007).

    Article  CAS  Google Scholar 

  4. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, J. Am. Chem. Soc. 127, 2264 (2005).

    Article  CAS  Google Scholar 

  5. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday 2, 18 (2007).

    Google Scholar 

  6. Y. Chen and A. Pepin, Electrophoresis 22, 187 (2001).

    Article  CAS  Google Scholar 

  7. B. T. Draine, and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).

    Article  Google Scholar 

  8. M. Futamata, Y. Maruyama, and M. Ishikawa, J. Phys. Chem. B 107, 7607 (2003).

    Article  CAS  Google Scholar 

  9. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).

    Article  CAS  Google Scholar 

  10. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, Acc. Chem. Res. 40, 53 (2007).

    Article  CAS  Google Scholar 

  11. B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).

    Article  CAS  Google Scholar 

  12. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).

    Article  CAS  Google Scholar 

  13. Y. G. Sun and Y. N. Xia, Science 298, 2176 (2002).

    Article  CAS  Google Scholar 

  14. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).

    Article  CAS  Google Scholar 

  15. P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, Colloids Surf., A 214, 23 (2003).

    Article  CAS  Google Scholar 

  16. J. C. Hulteen and R. P. van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).

    Article  Google Scholar 

  17. A. Dmitriev, T. Pakizeh, M. Kall, and D. S. Sutherland, Small 3, 294 (2007).

    Article  CAS  Google Scholar 

  18. H. Wei, U. Håkansson, Z. Yang, F. Höök, and H. Xu, Small 4, 1296 (2008).

    Article  CAS  Google Scholar 

  19. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Opt. Commun. 239, 61 (2004).

    Article  CAS  Google Scholar 

  20. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, Nano Lett. 4, 1003 (2004).

    Article  CAS  Google Scholar 

  21. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. (Washington, D.C) 108, 494 (2008).

    CAS  Google Scholar 

  22. C. Genet and T. W. Ebbesen, Nature (London) 445, 39 (2007).

    Article  CAS  Google Scholar 

  23. J. Homola, Chem. Rev. (Washington, D.C) 108, 462 (2008).

    CAS  Google Scholar 

  24. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, Plasmonics 2, 107 (2007).

    Article  CAS  Google Scholar 

  25. K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

    Article  CAS  Google Scholar 

  26. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, Langmuir 20, 4813 (2004).

    Article  CAS  Google Scholar 

  27. A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, J. Am. Chem. Soc. 127, 5043 (2005).

    Article  CAS  Google Scholar 

  28. G. Rong, H. Wang, L. R. Skewis, and B. M. Reinhard, Nano Lett.. 8, 338 (2008).

    Article  CAS  Google Scholar 

  29. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).

    Article  Google Scholar 

  30. B. Liedberg, C. Nylander, and I. Lundstrom, Sens. Actuators 4, 299 (1983).

    Article  CAS  Google Scholar 

  31. E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).

    CAS  Google Scholar 

  32. I. D. Alves, C. K. Park, and V. J. Hruby, Current Protein & Peptide Science 6, 293 (2005).

    Article  CAS  Google Scholar 

  33. B. Rothenhausler and W. Knoll, Nature (London) 332, 615 (1988).

    Article  Google Scholar 

  34. T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

    Article  CAS  Google Scholar 

  35. J. Dostalek and J. Homola, Sens. Actuators B 129, 303 (2008).

    Article  CAS  Google Scholar 

  36. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Phys. Rev. Lett. 21, 1530 (1968).

    Article  CAS  Google Scholar 

  37. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).

    Article  CAS  Google Scholar 

  38. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).

    Article  CAS  Google Scholar 

  39. M. E. Stewart et al., Proc. Natl. Acad. Sci. U.S.A. 103, 17143 (2006).

    Article  CAS  Google Scholar 

  40. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).

    Article  CAS  Google Scholar 

  41. A. Krishnan et al., Opt. Commun. 200, 1 (2001).

    Article  CAS  Google Scholar 

  42. J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Angew. Chem., Int. Ed. 47, 5013 (2008).

    Article  CAS  Google Scholar 

  43. A. Degiron and T. W. Ebbesen, J. Opt. A, Pure Appl. Opt. 7, S90 (2005).

    Article  Google Scholar 

  44. G. Mie, Ann. Phys. 25, 330 (1908).

    Google Scholar 

  45. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 7, 1947 (2007).

    Article  CAS  Google Scholar 

  46. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, J. Phys. Chem. C 112, 13958 (2008).

    Article  CAS  Google Scholar 

  47. C. Langhammer, B. Kasemo, and I. Zoric, J. Chem. Phys. 126, 194702 (2007).

    Article  CAS  Google Scholar 

  48. 48 C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).

    Article  CAS  Google Scholar 

  49. C. Langhammer, Z. Yuan, I. Zoric, and B. Kasemo, Nano Lett. 6, 833 (2006).

    Article  CAS  Google Scholar 

  50. C. Langhammer, I. Zoric, and B. Kasemo, Nano Lett. 7, 3122 (2007).

    Article  CAS  Google Scholar 

  51. S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).

    Article  CAS  Google Scholar 

  52. C. Oubre and P. Nordlander, J. Phys. Chem. B 108, 17740 (2004).

    Article  CAS  Google Scholar 

  53. P. Englebienne, Analyst (Cambridge, U.K.) 123, 1599 (1998).

    Article  CAS  Google Scholar 

  54. G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, Chem.-Eur. J. 8, 3850 (2002).

    Article  Google Scholar 

  55. N. Nath and A. Chilkoti, Anal. Chem. 74, 504 (2002).

    Article  CAS  Google Scholar 

  56. L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, Langmuir 19, 10414 (2003).

    Article  CAS  Google Scholar 

  57. Y.-B. Shin, J.-M. Lee, M.-R. Park, M.-G. Kim, B. H. Chung, H.-B. Pyo, and S. Maeng, Biosens. Bioelectron. 22, 2301 (2007).

    Article  CAS  Google Scholar 

  58. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).

    Article  CAS  Google Scholar 

  59. A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).

    Article  CAS  Google Scholar 

  60. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, Nano Lett. 3, 935 (2003).

    Article  CAS  Google Scholar 

  61. G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, Anal. Chem. 80, 984 (2008).

    Article  CAS  Google Scholar 

  62. A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).

    Article  CAS  Google Scholar 

  63. A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920 (2004).

    Article  CAS  Google Scholar 

  64. M. P. Jonsson, P. Jonsson, A. B. Dahlin, and F. Hook, Nano Lett. 7, 3462 (2007).

    Article  CAS  Google Scholar 

  65. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 (1998).

    Article  CAS  Google Scholar 

  66. P. Hanarp, M. Kall, and D. S. Sutherland, J. Phys. Chem. B 107, 5768 (2003).

    Article  CAS  Google Scholar 

  67. I. Doron-Mor, H. Cohen, Z. Barkay, A. Shanzer, A. Vaskevich, and I. Rubinstein, Chem.-Eur. J. 11, 5555 (2005).

    Article  CAS  Google Scholar 

  68. C. L. Nehl, H. W. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).

    Article  CAS  Google Scholar 

  69. R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

    Article  CAS  Google Scholar 

  70. Y. G. Sun and Y. N. Xia, Anal. Chem. 74, 5297 (2002).

    Article  CAS  Google Scholar 

  71. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, Phys. Rev. Lett. 90, 057401 (2003).

    Article  CAS  Google Scholar 

  72. R. Bukasov and J. S. Shumaker-Parry, Nano Lett. 7, 1113 (2007).

    Article  CAS  Google Scholar 

  73. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, Adv. Mater. (Weinheim, Ger.) 17, 2131 (2005).

    Article  CAS  Google Scholar 

  74. E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, Nano Lett. 7, 1256 (2007).

    Article  CAS  Google Scholar 

  75. M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).

    Article  CAS  Google Scholar 

  76. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London) 382, 607 (1996).

    Article  CAS  Google Scholar 

  77. N. L. Rosi and C. A. Mirkin, Chem. Rev. (Washington, D.C) 105, 1547 (2005).

    CAS  Google Scholar 

  78. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5, 829 (2005).

    Article  CAS  Google Scholar 

  79. M. A. El-Sayed, Acc. Chem. Res. 34, 257 (2001).

    Article  CAS  Google Scholar 

  80. S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999).

    Article  CAS  Google Scholar 

  81. C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li, J. Phys. Chem. B 109, 13857 (2005).

    Article  CAS  Google Scholar 

  82. L. R. Hirsch et al., Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).

    Article  CAS  Google Scholar 

  83. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, Nano Lett. 5, 2335 (2005).

    Article  CAS  Google Scholar 

  84. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, J. Phys. Chem. C 111, 1207 (2007).

    Article  CAS  Google Scholar 

  85. T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, ACS Nano 2, 25 (2008).

    Article  CAS  Google Scholar 

  86. A. B. Dahlin, M. P. Jonsson, and F. Höök, Adv. Mater. (Weinheim, Ger.) 20, 1436 (2008).

    Article  CAS  Google Scholar 

  87. R. Marie, A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Biointerphases 2, 49 (2007).

    Article  CAS  Google Scholar 

  88. M. P. Jonsson, P. Jönsson, and F. Höök, Anal. Chem. 80, 7988 (2008).

    Article  CAS  Google Scholar 

  89. K. S. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).

    Article  CAS  Google Scholar 

  90. I. Pfeiffer and F. Hook, J. Am. Chem. Soc. 126, 10224 (2004).

    Article  CAS  Google Scholar 

  91. S. Svedhem, I. Pfeiffer, C. Larsson, C. Wingren, C. Borrebaeck, and F. Hook, ChemBioChem 4, 339 (2003). 92 M. Brandén, S. Forsvall, and F. Hook, ChemPhysChem, DOI: 10.1002/cphc.200800614.

    Article  CAS  Google Scholar 

  92. W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, J. Am. Chem. Soc. 130, 5836 (2008).

    Article  CAS  Google Scholar 

  93. A. B. Dahlin, P. Jonsson, M. P. Jonsson, E. Schmid, and F. Hook, ACS Nano 2, 2174 (2008).

    Article  CAS  Google Scholar 

  94. C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

    Article  CAS  Google Scholar 

  95. R. J. Heaton, A. W. Peterson, and R. M. Georgiadis, Proc. Natl. Acad. Sci. U.S.A. 98, 3701 (2001).

    Article  CAS  Google Scholar 

  96. C. Steinem, A. Janshoff, W. P. Ulrich, M. Sieber, and H. J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).

    Article  Google Scholar 

  97. A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).

    Article  CAS  Google Scholar 

  98. A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 109 (2004).

    Article  CAS  Google Scholar 

  99. Y. Zhou, H. Xu, A. B. Dahlin, J. Vallkil, C. A. K. Borrebaeck, C. Wingren, B. Liedberg, and F. Hook, Biointerphases 2, 6 (2007).

    Article  CAS  Google Scholar 

  100. P. A. Cuypers, J. W. Corsel, M. P. Janssen, J. M. Kop, W. T. Hermens, and H. C. Hemker, J. Biol. Chem. 258, 2426 (1983).

    CAS  Google Scholar 

  101. E. Reimhult, C. Larsson, B. Kasemo, and F. Hook, Anal. Chem. 76, 7211 (2004).

    Article  CAS  Google Scholar 

  102. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, J. Am. Chem. Soc. 127, 14936 (2005).

    Article  CAS  Google Scholar 

  103. I. Gryczynski, J. Malicka, Y. B. Shen, Z. Gryczynski, and J. R. Lakowicz, J. Phys. Chem. B 106, 2191 (2002).

    Article  CAS  Google Scholar 

  104. J. B. Jackson and N. J. Halas, Proc. Natl. Acad. Sci. U.S.A. 101, 17930 (2004).

    Article  CAS  Google Scholar 

  105. D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).

    Article  CAS  Google Scholar 

  106. S. M. Nie and S. R. Emery, Science 275, 1102 (1997).

    Article  CAS  Google Scholar 

  107. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonsson, M.P., Dahlin, A.B., Jönsson, P. et al. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review). Biointerphases 3, FD30–FD40 (2008). https://doi.org/10.1116/1.3027483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3027483