Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review)

Article metrics

  • 779 Accesses

  • 24 Citations

Abstract

The resonance conditions for excitation of propagating surface plasmons at planar metal/dielectric interfaces and localized surface plasmons associated with metal nanostructures are both sensitive to changes in the interfacial refractive index. This has made these phenomena increasingly popular as transducer principles in label-free sensing of biomolecular recognition reactions. In this article, the authors review the recent progress in the field of nanoplasmonic bioanalytical sensing in general, but set particular focus on certain unique possibilities provided by short-range ordered nanoholes in thin metal films. Although the latter structures are formed in continuous metal films, while nanoparticles are discrete entities, these two systems display striking similarities with respect to sensing capabilities, including bulk sensitivities, and the localization of the electromagnetic fields. In contrast, periodic arrays of nanoholes formed in metal films, most known for their ability to provide wavelength-tuned enhanced transmission, show more similarities with conventional propagating surface plasmon resonance. However, common for both short-range ordered and periodic nanoholes formed in metal films is that the substrate is electrically conductive. Some of the possibilities that emerge from sensor templates that are both electrically conductive and plasmon active are discussed and illustrated using recent results on synchronized nanoplasmonic and quartz crystal microbalance with dissipation monitoring of supported lipid bilayer formation and subsequent biomolecular recognition reactions. Besides the fact that this combination of techniques provides an independent measure of biomolecular structural changes, it is also shown to contribute with a general means to quantify the response from nanoplasmonic sensors in terms of bound molecular mass.

References

  1. 1

    C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).

  2. 2

    H. A. Atwater, Sci. Am. 296, 56 (2007).

  3. 3

    S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, Nano Lett. 7, 1338 (2007).

  4. 4

    A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, J. Am. Chem. Soc. 127, 2264 (2005).

  5. 5

    P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday 2, 18 (2007).

  6. 6

    Y. Chen and A. Pepin, Electrophoresis 22, 187 (2001).

  7. 7

    B. T. Draine, and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).

  8. 8

    M. Futamata, Y. Maruyama, and M. Ishikawa, J. Phys. Chem. B 107, 7607 (2003).

  9. 9

    E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).

  10. 10

    H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, Acc. Chem. Res. 40, 53 (2007).

  11. 11

    B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).

  12. 12

    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).

  13. 13

    Y. G. Sun and Y. N. Xia, Science 298, 2176 (2002).

  14. 14

    H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).

  15. 15

    P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, Colloids Surf., A 214, 23 (2003).

  16. 16

    J. C. Hulteen and R. P. van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).

  17. 17

    A. Dmitriev, T. Pakizeh, M. Kall, and D. S. Sutherland, Small 3, 294 (2007).

  18. 18

    H. Wei, U. Håkansson, Z. Yang, F. Höök, and H. Xu, Small 4, 1296 (2008).

  19. 19

    A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Opt. Commun. 239, 61 (2004).

  20. 20

    J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, Nano Lett. 4, 1003 (2004).

  21. 21

    M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. (Washington, D.C) 108, 494 (2008).

  22. 22

    C. Genet and T. W. Ebbesen, Nature (London) 445, 39 (2007).

  23. 23

    J. Homola, Chem. Rev. (Washington, D.C) 108, 462 (2008).

  24. ba]24

    P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, Plasmonics 2, 107 (2007).

  25. 25

    K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

  26. 26

    A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, Langmuir 20, 4813 (2004).

  27. 27

    A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, J. Am. Chem. Soc. 127, 5043 (2005).

  28. 28

    G. Rong, H. Wang, L. R. Skewis, and B. M. Reinhard, Nano Lett.. 8, 338 (2008).

  29. 29

    J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).

  30. 30

    B. Liedberg, C. Nylander, and I. Lundstrom, Sens. Actuators 4, 299 (1983).

  31. 31

    E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).

  32. 32

    I. D. Alves, C. K. Park, and V. J. Hruby, Current Protein & Peptide Science 6, 293 (2005).

  33. 33

    B. Rothenhausler and W. Knoll, Nature (London) 332, 615 (1988).

  34. 34

    T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

  35. 35

    J. Dostalek and J. Homola, Sens. Actuators B 129, 303 (2008).

  36. 36

    R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Phys. Rev. Lett. 21, 1530 (1968).

  37. 37

    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).

  38. 38

    H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).

  39. 39

    M. E. Stewart et al., Proc. Natl. Acad. Sci. U.S.A. 103, 17143 (2006).

  40. 40

    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).

  41. 41

    A. Krishnan et al., Opt. Commun. 200, 1 (2001).

  42. 42

    J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Angew. Chem., Int. Ed. 47, 5013 (2008).

  43. 43

    A. Degiron and T. W. Ebbesen, J. Opt. A, Pure Appl. Opt. 7, S90 (2005).

  44. 44

    G. Mie, Ann. Phys. 25, 330 (1908).

  45. 45

    G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 7, 1947 (2007).

  46. 46

    G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, J. Phys. Chem. C 112, 13958 (2008).

  47. 47

    C. Langhammer, B. Kasemo, and I. Zoric, J. Chem. Phys. 126, 194702 (2007).

  48. 48

    48 C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).

  49. 49

    C. Langhammer, Z. Yuan, I. Zoric, and B. Kasemo, Nano Lett. 6, 833 (2006).

  50. 50

    C. Langhammer, I. Zoric, and B. Kasemo, Nano Lett. 7, 3122 (2007).

  51. 51

    S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).

  52. 52

    C. Oubre and P. Nordlander, J. Phys. Chem. B 108, 17740 (2004).

  53. 53

    P. Englebienne, Analyst (Cambridge, U.K.) 123, 1599 (1998).

  54. 54

    G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, Chem.-Eur. J. 8, 3850 (2002).

  55. 55

    N. Nath and A. Chilkoti, Anal. Chem. 74, 504 (2002).

  56. 56

    L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, Langmuir 19, 10414 (2003).

  57. 57

    Y.-B. Shin, J.-M. Lee, M.-R. Park, M.-G. Kim, B. H. Chung, H.-B. Pyo, and S. Maeng, Biosens. Bioelectron. 22, 2301 (2007).

  58. 58

    J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).

  59. 59

    A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).

  60. 60

    G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, Nano Lett. 3, 935 (2003).

  61. 61

    G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, Anal. Chem. 80, 984 (2008).

  62. 62

    A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).

  63. 63

    A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920 (2004).

  64. 64

    M. P. Jonsson, P. Jonsson, A. B. Dahlin, and F. Hook, Nano Lett. 7, 3462 (2007).

  65. 65

    L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 (1998).

  66. 66

    P. Hanarp, M. Kall, and D. S. Sutherland, J. Phys. Chem. B 107, 5768 (2003).

  67. 67

    I. Doron-Mor, H. Cohen, Z. Barkay, A. Shanzer, A. Vaskevich, and I. Rubinstein, Chem.-Eur. J. 11, 5555 (2005).

  68. 68

    C. L. Nehl, H. W. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).

  69. 69

    R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

  70. 70

    Y. G. Sun and Y. N. Xia, Anal. Chem. 74, 5297 (2002).

  71. 71

    J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, Phys. Rev. Lett. 90, 057401 (2003).

  72. 72

    R. Bukasov and J. S. Shumaker-Parry, Nano Lett. 7, 1113 (2007).

  73. 73

    J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, Adv. Mater. (Weinheim, Ger.) 17, 2131 (2005).

  74. 74

    E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, Nano Lett. 7, 1256 (2007).

  75. 75

    M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).

  76. 76

    C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London) 382, 607 (1996).

  77. 77

    N. L. Rosi and C. A. Mirkin, Chem. Rev. (Washington, D.C) 105, 1547 (2005).

  78. 78

    I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5, 829 (2005).

  79. 79

    M. A. El-Sayed, Acc. Chem. Res. 34, 257 (2001).

  80. 80

    S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999).

  81. 81

    C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li, J. Phys. Chem. B 109, 13857 (2005).

  82. 82

    L. R. Hirsch et al., Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).

  83. 83

    T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, Nano Lett. 5, 2335 (2005).

  84. 84

    T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, J. Phys. Chem. C 111, 1207 (2007).

  85. 85

    T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, ACS Nano 2, 25 (2008).

  86. 86

    A. B. Dahlin, M. P. Jonsson, and F. Höök, Adv. Mater. (Weinheim, Ger.) 20, 1436 (2008).

  87. 87

    R. Marie, A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Biointerphases 2, 49 (2007).

  88. 88

    M. P. Jonsson, P. Jönsson, and F. Höök, Anal. Chem. 80, 7988 (2008).

  89. 89

    K. S. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).

  90. 90

    I. Pfeiffer and F. Hook, J. Am. Chem. Soc. 126, 10224 (2004).

  91. 91

    S. Svedhem, I. Pfeiffer, C. Larsson, C. Wingren, C. Borrebaeck, and F. Hook, ChemBioChem 4, 339 (2003). 92 M. Brandén, S. Forsvall, and F. Hook, ChemPhysChem, DOI: 10.1002/cphc.200800614.

  92. 93

    W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, J. Am. Chem. Soc. 130, 5836 (2008).

  93. 94

    A. B. Dahlin, P. Jonsson, M. P. Jonsson, E. Schmid, and F. Hook, ACS Nano 2, 2174 (2008).

  94. 95

    C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

  95. 96

    R. J. Heaton, A. W. Peterson, and R. M. Georgiadis, Proc. Natl. Acad. Sci. U.S.A. 98, 3701 (2001).

  96. 97

    C. Steinem, A. Janshoff, W. P. Ulrich, M. Sieber, and H. J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).

  97. 98

    A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).

  98. 99

    A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 109 (2004).

  99. 100

    Y. Zhou, H. Xu, A. B. Dahlin, J. Vallkil, C. A. K. Borrebaeck, C. Wingren, B. Liedberg, and F. Hook, Biointerphases 2, 6 (2007).

  100. 101

    P. A. Cuypers, J. W. Corsel, M. P. Janssen, J. M. Kop, W. T. Hermens, and H. C. Hemker, J. Biol. Chem. 258, 2426 (1983).

  101. 102

    E. Reimhult, C. Larsson, B. Kasemo, and F. Hook, Anal. Chem. 76, 7211 (2004).

  102. 103

    A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, J. Am. Chem. Soc. 127, 14936 (2005).

  103. 104

    I. Gryczynski, J. Malicka, Y. B. Shen, Z. Gryczynski, and J. R. Lakowicz, J. Phys. Chem. B 106, 2191 (2002).

  104. 105

    J. B. Jackson and N. J. Halas, Proc. Natl. Acad. Sci. U.S.A. 101, 17930 (2004).

  105. 106

    D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).

  106. 107

    S. M. Nie and S. R. Emery, Science 275, 1102 (1997).

  107. 108

    S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article