Skip to main content

Journal for Biophysical Chemistry

Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review)

Abstract

The resonance conditions for excitation of propagating surface plasmons at planar metal/dielectric interfaces and localized surface plasmons associated with metal nanostructures are both sensitive to changes in the interfacial refractive index. This has made these phenomena increasingly popular as transducer principles in label-free sensing of biomolecular recognition reactions. In this article, the authors review the recent progress in the field of nanoplasmonic bioanalytical sensing in general, but set particular focus on certain unique possibilities provided by short-range ordered nanoholes in thin metal films. Although the latter structures are formed in continuous metal films, while nanoparticles are discrete entities, these two systems display striking similarities with respect to sensing capabilities, including bulk sensitivities, and the localization of the electromagnetic fields. In contrast, periodic arrays of nanoholes formed in metal films, most known for their ability to provide wavelength-tuned enhanced transmission, show more similarities with conventional propagating surface plasmon resonance. However, common for both short-range ordered and periodic nanoholes formed in metal films is that the substrate is electrically conductive. Some of the possibilities that emerge from sensor templates that are both electrically conductive and plasmon active are discussed and illustrated using recent results on synchronized nanoplasmonic and quartz crystal microbalance with dissipation monitoring of supported lipid bilayer formation and subsequent biomolecular recognition reactions. Besides the fact that this combination of techniques provides an independent measure of biomolecular structural changes, it is also shown to contribute with a general means to quantify the response from nanoplasmonic sensors in terms of bound molecular mass.

References

  1. 1

    C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).

    Article  CAS  Google Scholar 

  2. 2

    H. A. Atwater, Sci. Am. 296, 56 (2007).

    CAS  Article  Google Scholar 

  3. 3

    S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, Nano Lett. 7, 1338 (2007).

    CAS  Article  Google Scholar 

  4. 4

    A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, J. Am. Chem. Soc. 127, 2264 (2005).

    CAS  Article  Google Scholar 

  5. 5

    P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday 2, 18 (2007).

    Google Scholar 

  6. 6

    Y. Chen and A. Pepin, Electrophoresis 22, 187 (2001).

    CAS  Article  Google Scholar 

  7. 7

    B. T. Draine, and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).

    Article  Google Scholar 

  8. 8

    M. Futamata, Y. Maruyama, and M. Ishikawa, J. Phys. Chem. B 107, 7607 (2003).

    CAS  Article  Google Scholar 

  9. 9

    E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).

    CAS  Article  Google Scholar 

  10. 10

    H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, Acc. Chem. Res. 40, 53 (2007).

    Article  CAS  Google Scholar 

  11. 11

    B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).

    CAS  Article  Google Scholar 

  12. 12

    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Y. G. Sun and Y. N. Xia, Science 298, 2176 (2002).

    CAS  Article  Google Scholar 

  14. 14

    H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).

    CAS  Article  Google Scholar 

  15. 15

    P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, Colloids Surf., A 214, 23 (2003).

    CAS  Article  Google Scholar 

  16. 16

    J. C. Hulteen and R. P. van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).

    Article  Google Scholar 

  17. 17

    A. Dmitriev, T. Pakizeh, M. Kall, and D. S. Sutherland, Small 3, 294 (2007).

    CAS  Article  Google Scholar 

  18. 18

    H. Wei, U. Håkansson, Z. Yang, F. Höök, and H. Xu, Small 4, 1296 (2008).

    CAS  Article  Google Scholar 

  19. 19

    A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Opt. Commun. 239, 61 (2004).

    CAS  Article  Google Scholar 

  20. 20

    J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, Nano Lett. 4, 1003 (2004).

    CAS  Article  Google Scholar 

  21. 21

    M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. (Washington, D.C) 108, 494 (2008).

    CAS  Google Scholar 

  22. 22

    C. Genet and T. W. Ebbesen, Nature (London) 445, 39 (2007).

    CAS  Article  Google Scholar 

  23. 23

    J. Homola, Chem. Rev. (Washington, D.C) 108, 462 (2008).

    CAS  Google Scholar 

  24. ba]24

    P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, Plasmonics 2, 107 (2007).

    CAS  Article  Google Scholar 

  25. 25

    K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

    CAS  Article  Google Scholar 

  26. 26

    A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, Langmuir 20, 4813 (2004).

    CAS  Article  Google Scholar 

  27. 27

    A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, J. Am. Chem. Soc. 127, 5043 (2005).

    CAS  Article  Google Scholar 

  28. 28

    G. Rong, H. Wang, L. R. Skewis, and B. M. Reinhard, Nano Lett.. 8, 338 (2008).

    Article  CAS  Google Scholar 

  29. 29

    J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).

    Article  Google Scholar 

  30. 30

    B. Liedberg, C. Nylander, and I. Lundstrom, Sens. Actuators 4, 299 (1983).

    CAS  Article  Google Scholar 

  31. 31

    E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).

    CAS  Google Scholar 

  32. 32

    I. D. Alves, C. K. Park, and V. J. Hruby, Current Protein & Peptide Science 6, 293 (2005).

    CAS  Article  Google Scholar 

  33. 33

    B. Rothenhausler and W. Knoll, Nature (London) 332, 615 (1988).

    Article  Google Scholar 

  34. 34

    T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

    CAS  Article  Google Scholar 

  35. 35

    J. Dostalek and J. Homola, Sens. Actuators B 129, 303 (2008).

    Article  CAS  Google Scholar 

  36. 36

    R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Phys. Rev. Lett. 21, 1530 (1968).

    CAS  Article  Google Scholar 

  37. 37

    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).

    CAS  Article  Google Scholar 

  38. 38

    H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).

    CAS  Article  Google Scholar 

  39. 39

    M. E. Stewart et al., Proc. Natl. Acad. Sci. U.S.A. 103, 17143 (2006).

    CAS  Article  Google Scholar 

  40. 40

    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).

    CAS  Article  Google Scholar 

  41. 41

    A. Krishnan et al., Opt. Commun. 200, 1 (2001).

    CAS  Article  Google Scholar 

  42. 42

    J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Angew. Chem., Int. Ed. 47, 5013 (2008).

    CAS  Article  Google Scholar 

  43. 43

    A. Degiron and T. W. Ebbesen, J. Opt. A, Pure Appl. Opt. 7, S90 (2005).

    Article  Google Scholar 

  44. 44

    G. Mie, Ann. Phys. 25, 330 (1908).

    Google Scholar 

  45. 45

    G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 7, 1947 (2007).

    CAS  Article  Google Scholar 

  46. 46

    G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, J. Phys. Chem. C 112, 13958 (2008).

    CAS  Article  Google Scholar 

  47. 47

    C. Langhammer, B. Kasemo, and I. Zoric, J. Chem. Phys. 126, 194702 (2007).

    Article  CAS  Google Scholar 

  48. 48

    48 C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).

    CAS  Article  Google Scholar 

  49. 49

    C. Langhammer, Z. Yuan, I. Zoric, and B. Kasemo, Nano Lett. 6, 833 (2006).

    CAS  Article  Google Scholar 

  50. 50

    C. Langhammer, I. Zoric, and B. Kasemo, Nano Lett. 7, 3122 (2007).

    CAS  Article  Google Scholar 

  51. 51

    S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).

    CAS  Article  Google Scholar 

  52. 52

    C. Oubre and P. Nordlander, J. Phys. Chem. B 108, 17740 (2004).

    CAS  Article  Google Scholar 

  53. 53

    P. Englebienne, Analyst (Cambridge, U.K.) 123, 1599 (1998).

    CAS  Article  Google Scholar 

  54. 54

    G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, Chem.-Eur. J. 8, 3850 (2002).

    Article  Google Scholar 

  55. 55

    N. Nath and A. Chilkoti, Anal. Chem. 74, 504 (2002).

    CAS  Article  Google Scholar 

  56. 56

    L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, Langmuir 19, 10414 (2003).

    CAS  Article  Google Scholar 

  57. 57

    Y.-B. Shin, J.-M. Lee, M.-R. Park, M.-G. Kim, B. H. Chung, H.-B. Pyo, and S. Maeng, Biosens. Bioelectron. 22, 2301 (2007).

    CAS  Article  Google Scholar 

  58. 58

    J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).

    CAS  Article  Google Scholar 

  59. 59

    A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).

    CAS  Article  Google Scholar 

  60. 60

    G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, Nano Lett. 3, 935 (2003).

    CAS  Article  Google Scholar 

  61. 61

    G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, Anal. Chem. 80, 984 (2008).

    CAS  Article  Google Scholar 

  62. 62

    A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).

    CAS  Article  Google Scholar 

  63. 63

    A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920 (2004).

    CAS  Article  Google Scholar 

  64. 64

    M. P. Jonsson, P. Jonsson, A. B. Dahlin, and F. Hook, Nano Lett. 7, 3462 (2007).

    CAS  Article  Google Scholar 

  65. 65

    L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 (1998).

    CAS  Article  Google Scholar 

  66. 66

    P. Hanarp, M. Kall, and D. S. Sutherland, J. Phys. Chem. B 107, 5768 (2003).

    CAS  Article  Google Scholar 

  67. 67

    I. Doron-Mor, H. Cohen, Z. Barkay, A. Shanzer, A. Vaskevich, and I. Rubinstein, Chem.-Eur. J. 11, 5555 (2005).

    CAS  Article  Google Scholar 

  68. 68

    C. L. Nehl, H. W. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).

    CAS  Article  Google Scholar 

  69. 69

    R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

    CAS  Article  Google Scholar 

  70. 70

    Y. G. Sun and Y. N. Xia, Anal. Chem. 74, 5297 (2002).

    CAS  Article  Google Scholar 

  71. 71

    J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, Phys. Rev. Lett. 90, 057401 (2003).

    CAS  Article  Google Scholar 

  72. 72

    R. Bukasov and J. S. Shumaker-Parry, Nano Lett. 7, 1113 (2007).

    CAS  Article  Google Scholar 

  73. 73

    J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, Adv. Mater. (Weinheim, Ger.) 17, 2131 (2005).

    CAS  Article  Google Scholar 

  74. 74

    E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, Nano Lett. 7, 1256 (2007).

    CAS  Article  Google Scholar 

  75. 75

    M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).

    CAS  Article  Google Scholar 

  76. 76

    C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London) 382, 607 (1996).

    CAS  Article  Google Scholar 

  77. 77

    N. L. Rosi and C. A. Mirkin, Chem. Rev. (Washington, D.C) 105, 1547 (2005).

    CAS  Google Scholar 

  78. 78

    I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5, 829 (2005).

    CAS  Article  Google Scholar 

  79. 79

    M. A. El-Sayed, Acc. Chem. Res. 34, 257 (2001).

    CAS  Article  Google Scholar 

  80. 80

    S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999).

    CAS  Article  Google Scholar 

  81. 81

    C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li, J. Phys. Chem. B 109, 13857 (2005).

    CAS  Article  Google Scholar 

  82. 82

    L. R. Hirsch et al., Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).

    CAS  Article  Google Scholar 

  83. 83

    T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, Nano Lett. 5, 2335 (2005).

    CAS  Article  Google Scholar 

  84. 84

    T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, J. Phys. Chem. C 111, 1207 (2007).

    CAS  Article  Google Scholar 

  85. 85

    T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, ACS Nano 2, 25 (2008).

    CAS  Article  Google Scholar 

  86. 86

    A. B. Dahlin, M. P. Jonsson, and F. Höök, Adv. Mater. (Weinheim, Ger.) 20, 1436 (2008).

    CAS  Article  Google Scholar 

  87. 87

    R. Marie, A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Biointerphases 2, 49 (2007).

    CAS  Article  Google Scholar 

  88. 88

    M. P. Jonsson, P. Jönsson, and F. Höök, Anal. Chem. 80, 7988 (2008).

    CAS  Article  Google Scholar 

  89. 89

    K. S. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).

    CAS  Article  Google Scholar 

  90. 90

    I. Pfeiffer and F. Hook, J. Am. Chem. Soc. 126, 10224 (2004).

    CAS  Article  Google Scholar 

  91. 91

    S. Svedhem, I. Pfeiffer, C. Larsson, C. Wingren, C. Borrebaeck, and F. Hook, ChemBioChem 4, 339 (2003). 92 M. Brandén, S. Forsvall, and F. Hook, ChemPhysChem, DOI: 10.1002/cphc.200800614.

    CAS  Article  Google Scholar 

  92. 93

    W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, J. Am. Chem. Soc. 130, 5836 (2008).

    CAS  Article  Google Scholar 

  93. 94

    A. B. Dahlin, P. Jonsson, M. P. Jonsson, E. Schmid, and F. Hook, ACS Nano 2, 2174 (2008).

    CAS  Article  Google Scholar 

  94. 95

    C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

    CAS  Article  Google Scholar 

  95. 96

    R. J. Heaton, A. W. Peterson, and R. M. Georgiadis, Proc. Natl. Acad. Sci. U.S.A. 98, 3701 (2001).

    CAS  Article  Google Scholar 

  96. 97

    C. Steinem, A. Janshoff, W. P. Ulrich, M. Sieber, and H. J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).

    Article  Google Scholar 

  97. 98

    A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).

    CAS  Article  Google Scholar 

  98. 99

    A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 109 (2004).

    CAS  Article  Google Scholar 

  99. 100

    Y. Zhou, H. Xu, A. B. Dahlin, J. Vallkil, C. A. K. Borrebaeck, C. Wingren, B. Liedberg, and F. Hook, Biointerphases 2, 6 (2007).

    CAS  Article  Google Scholar 

  100. 101

    P. A. Cuypers, J. W. Corsel, M. P. Janssen, J. M. Kop, W. T. Hermens, and H. C. Hemker, J. Biol. Chem. 258, 2426 (1983).

    CAS  Google Scholar 

  101. 102

    E. Reimhult, C. Larsson, B. Kasemo, and F. Hook, Anal. Chem. 76, 7211 (2004).

    CAS  Article  Google Scholar 

  102. 103

    A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, J. Am. Chem. Soc. 127, 14936 (2005).

    CAS  Article  Google Scholar 

  103. 104

    I. Gryczynski, J. Malicka, Y. B. Shen, Z. Gryczynski, and J. R. Lakowicz, J. Phys. Chem. B 106, 2191 (2002).

    CAS  Article  Google Scholar 

  104. 105

    J. B. Jackson and N. J. Halas, Proc. Natl. Acad. Sci. U.S.A. 101, 17930 (2004).

    CAS  Article  Google Scholar 

  105. 106

    D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).

    CAS  Article  Google Scholar 

  106. 107

    S. M. Nie and S. R. Emery, Science 275, 1102 (1997).

    CAS  Article  Google Scholar 

  107. 108

    S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jonsson, M.P., Dahlin, A.B., Jönsson, P. et al. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review). Biointerphases 3, FD30–FD40 (2008). https://doi.org/10.1116/1.3027483

Download citation