Skip to main content

Journal for Biophysical Chemistry

Lateral heterogeneities in supported bilayers from pure and mixed phosphatidylethanolamine demonstrating hydrogen bonding capacity

Abstract

The phase behavior and lateral organization of saturated phosphatidylethanolamine (PE) and phosphatidylcholine (PC) bilayers were investigated using atomic force microscopy (AFM) and force-volume (FV) imaging for both pure and two component mixed layers. The results demonstrated the existence of unexpected segregated domains in pure PE membranes at temperatures well below the transition temperature (T m ) of the component phospholipid. These domains were of low mechanical stability and lacked the capacity for hydrogen bonding between lipid headgroups. Temperature dependent studies for different PC/PE ratios using AFM also demonstrated the mixing of these phospholipid bilayers to exhibit only a single gel to liquid transition temperature. Further work performed using FV imaging and chemically modified probes established that no lipid segregation exists at the PC/PE ratios investigated.

References

  1. 1

    M. R. Nussio, M. Liddell, M. J. Sykes, J. O. Miners, and J. G. Shapter, J. Scanning Probe Microsc. 2, 41 (2007).

    Article  CAS  Google Scholar 

  2. 2

    O. Domenech, F. Sanz, M. T. Montero, and J. Harnandez-Borell, O. Domenech, F. Sanz, M. T. Montero, and J. Harnandez-Borell, Biochim. Biophys. Acta 1758, 213 (2006).

    Article  CAS  Google Scholar 

  3. 3

    S. Chiantia, J. Ries, N. Kahya, and P. Schwille, ChemPhysChem 7, 2409 (2006).

    Article  CAS  Google Scholar 

  4. 4

    M. L. Kraft, P. K. Weber, M. L. Longo, I. D. Hutcheon, and S. G. Boxer, Science 313, 1948 (2006).

    Article  CAS  Google Scholar 

  5. 5

    S. Leekumjorn and A. K. Sum, Biophys. J. 90, 3951 (2006).

    Article  CAS  Google Scholar 

  6. 6

    M. Kranenburg and B. Smit, J. Phys. Chem. B 109, 6553 (2005).

    Article  CAS  Google Scholar 

  7. 7

    A. H. de Vries, A. E. Mark, and S. J. Marrink, J. Phys. Chem. B 108, 2454 (2004).

    Article  Google Scholar 

  8. 8

    P. Somerharju, J. A. Virtanen, and K. Hon Cheng, Biochim. Biophys. Acta 1440, 32 (1999).

    CAS  Google Scholar 

  9. 9

    K. Hon Cheng, M. Ruonala, J. Virtanen, and P. Somerharju, Biophys. J. 73, 1967 (1997).

    Article  Google Scholar 

  10. 10

    L. A. Bagatolli and E. Gratton, Biophys. J. 78, 290 (2000).

    Article  CAS  Google Scholar 

  11. 11

    T. Ahn and C.-H. Yun, Biophys. J. 369, 288 (1999).

    CAS  Google Scholar 

  12. 12

    D. Keller, N. B. Larsen, I. M. Moller, and O. G. Mouritsen, Phys. Rev. Lett. 94, 025701 (2005).

    Article  Google Scholar 

  13. 13

    Z. V. Leonenko, E. Finot, H. Ma, T. E. S. Dahms, and D. T. Cramb, Biophys. J. 86, 3783 (2004).

    Article  CAS  Google Scholar 

  14. 14

    L. A. Bagatolli and E. Gratton, Biophys. J. 79, 434 (2000).

    Article  CAS  Google Scholar 

  15. 15

    J. A. Virtanen, M. Ruonala, M. Vauhkonon, and P. Somerharju, Biochemistry 34, 11568 (1995).

    Article  CAS  Google Scholar 

  16. 16

    B. Y. Wong and R. Faller, Biochim. Biophys. Acta 1768, 620 (2007).

    Article  CAS  Google Scholar 

  17. 17

    S. Leekumjorn and A. K. Sum, Biochim. Biophys. Acta 1768, 354 (2007).

    Article  CAS  Google Scholar 

  18. 18

    M. R. Nussio, N. H. Voelcker, B. S. Flavel, C. T. Gibson, M. J. Sykes, J. O. Miners, and J. G. Shapter (unpublished).

  19. 19

    O. Domenech, S. Merino-Montero, M. T. Montero, and J. Hernandez-Borrell, Colloids Surf. 47, 102 (2006).

    Article  CAS  Google Scholar 

  20. 20

    I. Reviakine, A. Simon, and A. Brisson, Langmuir 16, 1473 (2000).

    Article  CAS  Google Scholar 

  21. 21

    O. Domenech, A. Morros, M. E. Cabanas, M. T. Montero, and J. Hernandez-Borrell, Biochim. Biophys. Acta 1768, 100 (2007).

    Article  CAS  Google Scholar 

  22. 22

    A. Berquand, M. P. Mingeot-Leclerq, and Y. F. Dufrene, Biochim. Biophys. Acta 1664, 198 (2004).

    Article  CAS  Google Scholar 

  23. 23

    M. T. Montero, M. Pijoan, S. Merino-Montero, T. Vinuesa, and J. Hernandez-Borrell, Langmuir 22, 7574 (2006).

    Article  CAS  Google Scholar 

  24. 24

    Z. Leonenko, E. Finot, and D. Cramb, Biochim. Biophys. Acta 1758, 487 (2006).

    Article  CAS  Google Scholar 

  25. 25

    S. Merino-Montero, O. Domenech, M. T. Montero, and J. Hernandez-Borrell, Biophys. Chem. 119, 78 (2006).

    Article  CAS  Google Scholar 

  26. 26

    H. Mueller, H. Butt, and E. Bamberg, J. Phys. Chem. B 104, 4552 (2000).

    Article  CAS  Google Scholar 

  27. 25

    E. Reimhult, F. Hook, and B. Kasemo, Langmuir 19, 1681 (2003).

    Article  CAS  Google Scholar 

  28. 28

    E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  29. 29

    Z. V. Feng, T. A. Spurlin, and A. A. Gewirth, Biophys. J. 88, 2154 (2005).

    Article  CAS  Google Scholar 

  30. 30

    S. Garcia-Manyes, G. Oncins, and F. Sanz, Biophys. J. 89, 4261 (2005).

    Article  CAS  Google Scholar 

  31. 31

    J. A. N. Zasadzinski, C. A. Helm, M. L. Longo, A. L. Weisenhorn, S. A. C. Gould, and P. K. Hansma, Biophys. J. 59, 755 (1991).

    Article  CAS  Google Scholar 

  32. 32

    S. W. Hui, R. Viswanathan, J. A. Zasadzinski, and J. N. Israelachvili, Biophys. J. 68, 171 (1995).

    Article  CAS  Google Scholar 

  33. 33

    O. Domenech, A. Morros, M. E. Cabanas, M. T. Montero, and J. Hernandez-Borrell, Ultramicroscopy 107, 943 (2007).

    Article  CAS  Google Scholar 

  34. 34

    C. C. Häse, A. C. Le Dain, and B. Martinac, J. Biol. Chem. 270, 18329 (1995).

    Article  Google Scholar 

  35. 35

    J. G. Stollery and W. J. Vail, Biochim. Biophys. Acta 471, 372 (1977).

    Article  CAS  Google Scholar 

  36. 36

    J. M. Seddon, Biochim. Biophys. Acta 1031, 1 (1990).

    CAS  Google Scholar 

  37. 37

    R. C. MacDonald, R. I. MacDonals, B. P. Menco, K. Takeshita, N. K. Subbarao, and L. R. Hu, Biochim. Biophys. Acta 1061, 297 (1991).

    Article  CAS  Google Scholar 

  38. 38

    S. J. P. McInnes, S. D. Graney, Y.-L. Khung, and N. Voelcker, Proc. SPIE 6036, 1 (2007).

    Google Scholar 

  39. 39

    A. Azhayev and M. Antopolsky, Tetrahedron 57, 4977 (2001).

    Article  CAS  Google Scholar 

  40. 40

    J. E. Sader, I. Larson, P. Mulvaney, and L. R. White, Rev. Sci. Instrum. 66, 3789 (1995).

    Article  CAS  Google Scholar 

  41. 41

    Z. V. Leonenko, A. Carnini, and D. T. Cramb, Biochim. Biophys. Acta 1509, 131 (2000).

    Article  CAS  Google Scholar 

  42. 42

    K. O. Evans, Int. J. Mol. Sci. 9, 498 (2008).

    Article  CAS  Google Scholar 

  43. 43

    G. Cevc, A. Watts, and D. Marsh, Biochemistry 20, 4955 (1981).

    Article  CAS  Google Scholar 

  44. 44

    M. Giesbers, J. M. Kleijn, and M. A. Cohen Stuart, J. Colloid Interface Sci. 252, 138 (2002).

    Article  CAS  Google Scholar 

  45. 45

    S. Garcia-Manyes, O. Domenech, F. Sanz, M. T. Montero, and J. Hernandez-Borrell, Biochim. Biophys. Acta 1768, 1190 (2007).

    Article  CAS  Google Scholar 

  46. 46

    S. Garcia-Manyes, P. Gorostiza, and F. Sanz, Anal. Chem. 78, 61 (2006).

    Article  CAS  Google Scholar 

  47. 47

    G. Oncins, S. Garcia-Manyes, and F. Sanz, Langmuir 21, 7373 (2005).

    Article  CAS  Google Scholar 

  48. 48

    S. Garcia-Manyes, G. Oncins, and F. Sanz, Biophys. J. 89, 1812 (2005).

    Article  CAS  Google Scholar 

  49. 49

    Y. F. Dufrêne, W. R. Barger, J. D. Green, and G. U. Lee, Langmuir 13, 4779 (1997).

    Article  Google Scholar 

  50. 50

    Y. F. Dufrêne, T. Boland, J. W. Schneider, W. R. Barger, and G. U. Lee, Faraday Discuss. 111, 79 (1999).

    Article  Google Scholar 

  51. 51

    Y. F. Dufrêne and G. U. Lee, Biochim. Biophys. Acta 1509, 14 (2000).

    Article  Google Scholar 

  52. 52

    A. Valsesia, M. M. Silvan, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, Plasma Processes Polym. 2, 334 (2005).

    Article  CAS  Google Scholar 

  53. 53

    B. P. Dinte, G. S. Watson, J. F. Dobson, and S. Myhra, Ultramicroscopy 63, 115 (1996).

    Article  CAS  Google Scholar 

  54. 54

    E. van den Brink-van del Laan, J. A. Killian, and B. de Kruijff, Biochim. Biophys. Acta 166, 275 (2004).

    Google Scholar 

  55. 55

    D. E. Elmore and D. A. Dougherty, Biophys. J. 81, 1345 (2001).

    Article  CAS  Google Scholar 

  56. 56

    A. G. Lee, Biochim. Biophys. Acta 1666, 62 (2004).

    Article  CAS  Google Scholar 

  57. 57

    A. Blume, R. J. Wittebort, S. K. Das Gupta, and R. G. Griffin, Biochemistry 21, 6243 (1982).

    Article  CAS  Google Scholar 

  58. 58

    T. Inoue and Y. Nibu, Chem. Phys. Lipids 100, 139 (1999).

    Article  CAS  Google Scholar 

  59. 59

    See EPAPS Document No. E-BJIOBN-3-001804 for a complete data set for temperature dependent studies for DMPE:DMPC binary supported bilayers. Histograms of adhesive forces measured for carboxy-modified AFM tips and the LDs of pure and binary DMPE phospholipid bilayers are also presented. For more information on EPAPS, see http:// www.aip.org/pubservs/epaps.html

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nicolas H. Voelcker or Joseph G. Shapter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nussio, M.R., Voelcker, N.H., Sykes, M.J. et al. Lateral heterogeneities in supported bilayers from pure and mixed phosphatidylethanolamine demonstrating hydrogen bonding capacity. Biointerphases 3, 96–104 (2008). https://doi.org/10.1116/1.3040158

Download citation