Skip to main content

Journal for Biophysical Chemistry

Structures of regenerated cellulose films revealed by grazing incidence small-angle x-ray scattering


The characteristic in-plane length scales of ultrathin films of regenerated cellulose are measured using noncontact atomic force microscopy (NC-AFM) and grazing incidence small-angle x-ray scattering (GISAXS) in ambient atmosphere and under various humidity conditions. The aim is to elucidate the structural basis for the excellent compatibility of cellulose supports to planar lipid membranes. Films are deposited on silicon wafers by Langmuir-Blodgett (LB) transfer and spin coating. NC-AFM height profiles and the resulting calculated power spectral density functions indicate that both kinds of cellulose films have almost identical root-mean-square roughness values (0.7–0.8 nm) and very similar characteristic length scales (32 nm), respectively. GISAXS measurements, both above and below the critical angle of total external reflection, show that the dominant length scales in the bulk and near the surface of the films are comparable (50 nm). The origin of these length scales can be attributed to the bundle of rodlike molecules of cellulose that result during the regeneration process (i.e., as a consequence of the cleavage of the silyl side chains of trimethylsilylcellulose). Exposure of the cellulose samples to various humidities shows that above a relative humidity of 97% a significant swelling of the films occurs, which is consistent with our previous findings. The swelling of films with more than 30 LB monolayers of cellulose induces a remarkable out-of-plane rearrangement of the cellulose bundles, due to a reduced influence of the solid substrate compared to thinner films with only eight to ten LB monolayers.


  1. 1

    H. J. Gabius and S. Gabius, Glycoscience (Chapmann and Hall, Weinheim, 1997).

    Google Scholar 

  2. 2

    W. D. Comper, Extracellular Matrix (Harwood, Academic, Amsterdam, 1996).

    Google Scholar 

  3. 3

    S. Löfas and B. Johnson, J. Chem. Soc., Chem. Commun. 21, 1526 (1990).

    Article  Google Scholar 

  4. 4

    J. M. Harris, Poly (Ethyleneglycol) Chemistry (Plenum, New York, 1992).

    Google Scholar 

  5. 5

    J. F. Kennedy, G. O. Phillips, P. A. Williams, and L. Piculell, Cellulose and Cellulose Derivatives: Physico-Chemical Aspects and Industrial Applications (Woodhead, Cambridge, 1995).

    Google Scholar 

  6. 6

    D. Klemm, T. Heinze, B. Philipp, and W. Wagenknecht, Acta Polym. 48, 277 (1997).

    Article  CAS  Google Scholar 

  7. 7

    J. F. Klebe and H. L. Finkbeiner, J. Polym. Sci. (A1) 7, 1947 (1969).

    CAS  Google Scholar 

  8. 8

    D. Klemm and A. Stein, J. Macromol. Sci., Pure Appl. Chem. A32, 899 (1995).

    CAS  Google Scholar 

  9. 9

    M. Schaub, G. Wenz, G. Wegner, A. Stein, and D. Klemm, Adv. Mater. 5, 919 (1993).

    Article  CAS  Google Scholar 

  10. 10

    V. Buchholz, P. Adler, M. Backer, W. Holle, A. Simon, and G. Wegner, Langmuir 13, 3206 (1997).

    Article  CAS  Google Scholar 

  11. 11

    H. Hillebrandt, G. Wiegand, M. Tanaka, and E. Sackmann, Langmuir 15, 8451 (1999).

    Article  CAS  Google Scholar 

  12. 12

    M. Tanaka, S. Kaufmann, J. Nissen, and M. Hochrein, Phys. Chem. Chem. Phys. 3, 4091 (2001).

    Article  CAS  Google Scholar 

  13. 13

    M. Tanaka, A. P. Wong, F. Rehfeldt, M. Tutus, and S. Kaufmann, J. Am. Chem. Soc. 126, 3257 (2004).

    Article  CAS  Google Scholar 

  14. 14

    M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

    Article  CAS  Google Scholar 

  15. 15

    S. Gritsch, P. Nollert, F. Jähnig, and E. Sackmann, Langmuir 14, 3118 (1998).

    Article  CAS  Google Scholar 

  16. 16

    E. Poptoshev and P. M. Claesson, Langmuir 18, 1184 (2002).

    Article  CAS  Google Scholar 

  17. 17

    O. J. Rojas, M. Ernstsson, R. D. Neumann, and P. M. Claesson, J. Phys. Chem. B 104, 10032 (2000).

    Article  CAS  Google Scholar 

  18. 18

    F. Rehfeldt and M. Tanaka, Langmuir 19, 1467 (2003).

    Article  CAS  Google Scholar 

  19. 19

    S. Morita, R. Wiesendanger, and E. Meyer, in Nancoscience and Technology, edited by P. Avouris, K. v. Klizing, H. Sakaki, and R. Wiesendanger (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  20. 20

    E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy (Springer, Berlin, 2004).

    Google Scholar 

  21. 21

    T. Salditt, T. H. Metzger, J. Peisl, and G. Goerigk, J. Phys. D: Appl. Phys. 28, A236 (1995).

    Article  Google Scholar 

  22. 22

    J. R. Levine, J. B. Cohen, Y. W. Chung, and P. Georgopoulos, J. Appl. Crystallogr. 22, 528 (1989).

    Article  CAS  Google Scholar 

  23. 23

    J. Daillant and M. Alba, Rep. Prog. Phys. 63, 1725 (2000).

    Article  CAS  Google Scholar 

  24. 24

    P. Müller-Buschbaum, Anal. Bioanal. Chem. 376, 3 (2003).

    Google Scholar 

  25. 25

    P. Panagiotou, E. Bauer, S. Loi, T. Titz, E. Maurer, and P. Müller-Buschbaum, Z. Kristallogr. 219, 210 (2004).

    Article  CAS  Google Scholar 

  26. 26

    M. Rauscher, T. Salditt, and H. Spohn, Phys. Rev. B 52, 16855 (1995).

    Article  CAS  Google Scholar 

  27. 27

    V. W. Stone, A. M. Jonas, B. Nysten, and R. Legras, Phys. Rev. B 60, 5883 (1999).

    Article  CAS  Google Scholar 

  28. 28

    R. García and R. Peréz, Surf. Sci. Rep. 47, 197 (2002).

    Article  Google Scholar 

  29. 29

    H. Hillebrandt and M. Tanaka, J. Phys. Chem. B 105, 4270 (2001).

    Article  CAS  Google Scholar 

  30. 30

    D. Bonnel, (Wiley-VCH, Weinheim, 2000).

  31. 31

    L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  32. 32

    B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).

    Article  CAS  Google Scholar 

  33. 33

    S. V. Roth, G. R. J. Artus, M. Rankl, S. Seeger, M. Burghammer, C. Riekel, and P. Muller-Buschbaum, Physica B 357, 190 (2005).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Fernanda F. Rossetti or Motomu Tanaka.

Additional information

This paper was submitted as part of In Focus: Synchrotron Radiation and Neutrons in Biointerface Science

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rossetti, F.F., Panagiotou, P., Rehfeldt, F. et al. Structures of regenerated cellulose films revealed by grazing incidence small-angle x-ray scattering. Biointerphases 3, 117–127 (2008).

Download citation