Skip to main content

Journal for Biophysical Chemistry

Charging and structure of zwitterionic supported bilayer lipid membranes studied by streaming current measurements, fluorescence microscopy, and attenuated total reflection Fourier transform infrared spectroscopy

Abstract

The authors report on the characterization of the charge formation at supported bilayer lipid membranes (sBLMs) prepared from the zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine on planar silicon dioxide substrates. The charging of the sBLMs was studied in KCl solutions of different ionic strengths between 0.1 and 10 mM by streaming current measurements. In addition, attenuated total reflection Fourier transform infrared spectroscopy and fluorescence microscopy were applied to determine the lipid concentration in the membrane and to study the influence of the harsh conditions (pH 9-2, shear forces) during the electrokinetic measurements on the membrane stability and the lipid diffusion coefficient. The sBLMs were found to be extremely stable. Isoelectric points of about 4 revealed that unsymmetrical adsorption of hydroxide and hydronium ions determined the charging of the outer leaflet of the membrane in the investigated pH range. The diffusion coefficients were found to be rather independent on the ionic strength at neutral and alkaline pH. However, significantly decreased lipid diffusion at pH<4 indicated a charge-induced transition of the fluidic bilayer into a gel/ordered-phase bilayer.

References

  1. S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).

    Article  CAS  Google Scholar 

  2. K. Simons and D. Toomre, Nat. Rev. Mol. Cell Biol. 1, 31 (2000).

    Article  CAS  Google Scholar 

  3. S. Munro, Cell 115, 377 (2003).

    Article  CAS  Google Scholar 

  4. M. I. Angelova and D. S. Dimitrov, Faraday Discuss. Chem. Soc. 81, 303 (1986).

    Article  CAS  Google Scholar 

  5. A. Brian and H. M. McConnell, Proc. Natl. Acad. Sci. U.S.A. 81, 6159 (1984).

    Article  CAS  Google Scholar 

  6. P. Mueller, D. O. Rudin, H. Ti Tien, and W. C. Wescott, J. Phys. Chem. 67, 534 (1963).

    CAS  Google Scholar 

  7. E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  8. E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).

    Article  CAS  Google Scholar 

  9. B. Kasemo, Surf. Sci. 500, 656 (2002).

    Article  CAS  Google Scholar 

  10. R. P. Richter, R. Berat, and A. R. Brisson, Langmuir 22, 3497 (2006).

    Article  CAS  Google Scholar 

  11. E. Reimhult, F. Höök, and B. Kasemo, J. Chem. Phys. 117, 7401 (2002).

    Article  CAS  Google Scholar 

  12. F. Rossetti, M. Textor, and I. Reviakine, Langmuir 22, 3467 (2006).

    Article  CAS  Google Scholar 

  13. S. Chiantia, J. Ries, N. Kahya, and P. Schwille, Chem Phys Chem 7, 2409 (2006).

    Article  CAS  Google Scholar 

  14. I. Köper, Mol. Biosyst. 3, 651 (2007).

    Article  Google Scholar 

  15. F. Rehfeldt, R. Steitz, S. P. Armes, R. Klitzing, A. P. Gast, and M. Tanaka, J. Phys. Chem. B 110, 9177 (2006).

    Article  CAS  Google Scholar 

  16. B. Nickel, BioInterphases 3, FC40 (2008).

    Article  Google Scholar 

  17. C. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

    Article  CAS  Google Scholar 

  18. O. V. Gerasimov, J. A. Boomer, M. M. Qualis, and D. H. Thompson, Adv. Drug Delivery Rev. 38, 317 (1999).

    Article  CAS  Google Scholar 

  19. M. E. Hays, C. M. Jewell, Y. Kondo, D. M. Lynn, and N. L. Abbott, Biophys. J. 93, 4414 (2007).

    Article  CAS  Google Scholar 

  20. F. C. Tsui, D. M. Ojcius, and W. L. Hubbell, Biophys. J. 49, 459 (1986).

    Article  CAS  Google Scholar 

  21. S. Garcia-Manyes, P. Gorostiza, and F. Sanz, Anal. Chem. 78, 61 (2006).

    Article  CAS  Google Scholar 

  22. S. McLaughlin, A. Bruder, S. Chen, and C. Moser, Biochim. Biophys. Acta 394, 304 (1975).

    Article  CAS  Google Scholar 

  23. S. A. Tatulian, Eur. J. Biochem. 170, 413 (1987).

    Article  CAS  Google Scholar 

  24. Y. Zhou and M. R. Raphael, Biophys. J. 92, 2451 (2007).

    Article  CAS  Google Scholar 

  25. S. E. Feller and A. D. MacKerell, Jr., J. Phys. Chem. B 104, 7510 (2000).

    Article  CAS  Google Scholar 

  26. S. A. Pandit, D. Bostick, and M. L. Berkowitz, Biophys. J. 84, 3743 (2003).

    Article  CAS  Google Scholar 

  27. R. A. Böckmann, A. Hac, T. Heimburg, and H. Grubmüller, Biophys. J. 85, 1647 (2003).

    Article  Google Scholar 

  28. S. W. I. Siu, R. Vácha, P. Jungwirth, and R. A. Böckmann, J. Chem. Phys. 128, 125103 (2008).

    Article  Google Scholar 

  29. Á. V. Delgado, F. González-Caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema, J. Colloid Interface Sci. 309, 194 (2007).

    Article  CAS  Google Scholar 

  30. R. Zimmermann, T. Osaki, R. Schweiss, and C. Werner, Microfluid Nanofluid 2, 367 (2006).

    Article  CAS  Google Scholar 

  31. J. Lyklema, Fundamentals of Interface and Colloid Science (Academic, London, 1991), Vol. II.

    Google Scholar 

  32. M. J. Hope, M. B. Bally, G. Webb, and P. R. Cullis, Biochim. Biophys. Acta 812, 55 (1985).

    Article  CAS  Google Scholar 

  33. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16, 1055 (1976).

    Article  CAS  Google Scholar 

  34. D. M. Soumpasis, Biophys. J. 41, 95 (1983).

    Article  CAS  Google Scholar 

  35. U. P. Fringeli, in Internal Reflection Spectroscopy: Theory and Applications, edited by F. M. Mirabella (Dekker, New York, 1992), pp. 255–324.

    Google Scholar 

  36. U. P. Fringeli, in Encyclopedia of Spectroscopy and Spectrometry, edited by J. C. Lindon (Academic, London, 2000), pp. 58–75.

    Google Scholar 

  37. C. Werner, H. Körber, R. Zimmermann, S. Dukhin, and H.-J. Jacobasch, J. Colloid Interface Sci. 208, 329 (1998).

    Article  CAS  Google Scholar 

  38. L. R. Cambrea, F. Haque, J. L. Schieler, J.-C. Rochet, and J. S. Hovis, Biophys. J. 93, 1630 (2007).

    Article  CAS  Google Scholar 

  39. C. Hamai, T. Yang, S. Kataoka, P. S. Cremer, and S. M. Musser, Biophys. J. 90, 1241 (2006).

    Article  CAS  Google Scholar 

  40. C. Hamai, P. S. Cremer, and S. M. Musser, Biophys. J. 92, 1988 (2007).

    Article  CAS  Google Scholar 

  41. S. C. Costigan, P. J. Booth, and R. H. Templer, Biochim. Biophys. Acta 1468, 41 (2000).

    Article  CAS  Google Scholar 

  42. J.-F. Tocanne and J. Teissie, Biochim. Biophys. Acta 1031, 111 (1990).

    CAS  Google Scholar 

  43. R. Zimmermann, S. Dukhin, and C. Werner, J. Phys. Chem. B 105, 8544 (2001).

    Article  CAS  Google Scholar 

  44. J. K. Beattie, Lab Chip 6, 1409 (2006).

    Article  CAS  Google Scholar 

  45. K. G. Marinova, R. G. Alargove, N. D. Denkov, O. D. Velev, D. N. Petsev, I. B. Ivanov, and R. P. Borwankar, Langmuir 12, 2045 (1996).

    Article  CAS  Google Scholar 

  46. A. Graciaa, Surfactant Sci. Ser. 106, 825 (2002).

    CAS  Google Scholar 

  47. R. J. Clarke and C. Lüpfert, Biophys. J. 76, 2614 (1999).

    Article  CAS  Google Scholar 

  48. H. Träuble and H. Eibl, Proc. Natl. Acad. Sci. U.S.A. 71, 214 (1974).

    Article  Google Scholar 

  49. Z. V. Leonenko, E. Finot, H. Ma, T. E. S. Dahms, and D. T. Cramb, Biophys. J. 86, 3783 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, R., Küttner, D., Renner, L. et al. Charging and structure of zwitterionic supported bilayer lipid membranes studied by streaming current measurements, fluorescence microscopy, and attenuated total reflection Fourier transform infrared spectroscopy. Biointerphases 4, 1–6 (2009). https://doi.org/10.1116/1.3082042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3082042