Skip to main content

Journal for Biophysical Chemistry

Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength

Abstract

The zeta potential of the motile spores of the green alga (seaweed) Ulva linza was quantified by video microscopy in combination with optical tweezers and determined to be −19.3±1.1 mV. The electrostatic component involved in the settlement and adhesion of spores was studied using electret surfaces consisting of PTFE and bearing different net charges. As the surface chemistry remains the same for differently charged surfaces, the experimental results isolate the influence of surface charge and thus electrostatic interactions. Ulva spores were demonstrated to have a reduced tendency to settle on negatively charged surfaces and when they did settle the adhesion strength of settled spores was lower than with neutral or positively charged surfaces. These observations can be ascribed to electrostatic interactions.

References

  1. A. Rosenhahn, T. Ederth, and M. E. Pettitt, BioInterphases 3, IR1 (2008).

    Article  Google Scholar 

  2. J. A. Callow and M. E. Callow, in Biological Adhesives, edited by A. M. Smith and J. A. Callow (Springer, Berlin, 2006), pp. 63–78.

    Chapter  Google Scholar 

  3. J. F. Schumacher, M. L. Carman, T. G. Estes, A. W. Feinberg, L. H. Wilson, M. E. Callow, J. A. Callow, J. A. Finlay, and A. B. Brennan, Biofouling 23, 55 (2007).

    Article  CAS  Google Scholar 

  4. T. Ederth, P. Nygren, M. E. Pettitt, M. Ostblom, C. X. Du, K. Broo, M. E. Callow, J. Callow, and B. Liedberg, Biofouling 24, 303 (2008).

    Article  CAS  Google Scholar 

  5. S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

    Article  CAS  Google Scholar 

  6. S. Schilp, A. Kueller, A. Rosenhahn, M. Grunze, M. E. Pettitt, M. E. Callow, and J. A. Callow, Biointerphases 2, 143 (2007).

    Article  CAS  Google Scholar 

  7. H. J. Kreuzer, R. L. C. Wang, and M. Grunze, J. Am. Chem. Soc. 125, 8384 (2003).

    Article  CAS  Google Scholar 

  8. L. K. Ista, M. E. Callow, J. A. Finlay, S. E. Coleman, A. C. Nolasco, R. H. Simons, J. A. Callow, and G. P. Lopez, Appl. Environ. Microbiol. 70, 4151 (2004).

    Article  CAS  Google Scholar 

  9. B. Jansen and W. Kohnen, J. Ind. Microbiol. 15, 391 (1995).

    Article  CAS  Google Scholar 

  10. M. C. M. Van Loosdrecht, J. Lyklema, W. Norde, G. Schraa, and A. J. B. Zehnder, Appl. Environ. Microbiol. 53, 1898 (1987).

    Google Scholar 

  11. M. Hermansson, Colloids Surf., B 14, 105 (1999).

    Article  CAS  Google Scholar 

  12. M. Gross, S. E. Cramton, F. Gotz, and A. Peschel, Infect. Immun. 69, 3423 (2001).

    Article  CAS  Google Scholar 

  13. N. Naujoks and A. Stemmer, Colloids Surf., A 249, 69 (2004).

    Article  CAS  Google Scholar 

  14. S. A. Makohliso, R. F. Valentini, and P. Aebischer, J. Biomed. Mater. Res. 27, 1075 (1993).

    Article  CAS  Google Scholar 

  15. G. M. Sessler, Electrets, 3rd ed. (Laplacian, Morgan Hill, CA, 1999).

    Google Scholar 

  16. W. W. Wilson, M. M. Wade, S. C. Holman, and F. R. Champlin, J. Microbiol. Methods 43, 153 (2001).

    Article  CAS  Google Scholar 

  17. A. H. Weerkamp, H. M. Uyen, and H. J. Busscher, J. Dent. Res. 67, 1483 (1988).

    Article  CAS  Google Scholar 

  18. J. S. Nordin, H. M. Tsuchiya, and A. G. Fredrickson, Biotechnol. Bioeng. 9, 545 (1967).

    Article  Google Scholar 

  19. B. Kwon, N. Park, and J. Cho, Desalination 179, 203 (2005).

    Article  CAS  Google Scholar 

  20. A. R. Shashikala and A. M. Raichur, Colloids Surf., B 24, 11 (2002).

    Article  CAS  Google Scholar 

  21. X. X. Sheng, Y. P. Ting, and S. O. Pehkonen, J. Colloid Interface Sci. 321, 256 (2008).

    Article  CAS  Google Scholar 

  22. T. Saito, T. Takatsuka, T. Kato, K. Ishihara, and K. Okuda, Arch. Oral Biol. 42, 539 (1997).

    Article  CAS  Google Scholar 

  23. A. YousefiRad, H. Ayhan, E. Piskin, and O. K. O, Turk. J. Biol. 24, 215 (2000).

    Google Scholar 

  24. H. Hayashi, S. Tsuneda, A. Hirata, and H. Sasaki, Colloids Surf., B 22, 149 (2001).

    Article  CAS  Google Scholar 

  25. J. Ives, J. Biochem. Microbiol. Technol. Eng. 1, 37 (1959).

    Article  Google Scholar 

  26. A. Gelabert, O. S. Pokrovsky, J. Schott, A. Boudou, A. Feurtet-Mazel, J. Mielczarski, E. Mielczarski, N. Mesmer-Dudons, and O. Spalla, Geochim. Cosmochim. Acta 68, 4039 (2004).

    Article  CAS  Google Scholar 

  27. B. M. Hsu, Parasitol. Res. 99, 357 (2006).

    Article  Google Scholar 

  28. C. P. Huang, J. R. S. Pan, and S. H. Huang, Water Res. 33, 1278 (1999).

    Article  CAS  Google Scholar 

  29. R. Gerhard-Multhaupt, W. Künstler, G. Eberle, W. Eisenmenger, and G. M. Yang, in Space Charge in Solid Dielectrics, edited by J. C. Fothergill and L. A. Dissado (Dielectrics Society, Leicester, England, 1998), pp. 123–132.

    Google Scholar 

  30. R. Gerhard-Multhaupt, Electrets, 3rd ed. (Laplacian, Morgan Hill, CA, 1999).

    Google Scholar 

  31. W. Eisenmenger and M. Haardt, Solid State Commun. 41, 917 (1982).

    Article  CAS  Google Scholar 

  32. I. Graz, A. Ebner, S. Bauer, C. Romanin, and H. Gruber, Appl. Phys. A: Mater. Sci. Process. 92, 547 (2008).

    Article  CAS  Google Scholar 

  33. M. E. Callow, J. A. Callow, J. D. Pickett-Heaps, and R. Wetherbee, J. Phycol. 33, 938 (1997).

    Article  Google Scholar 

  34. M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, Biofouling 18, 237 (2002).

    Article  Google Scholar 

  35. M. P. Schultz, J. A. Finlay, M. E. Callow, and J. A. Callow, Biofouling 15, 243 (2000).

    Article  Google Scholar 

  36. M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).

    Article  CAS  Google Scholar 

  37. A. Fontes, H. P. Fernandes, A. A. De Thomaz, L. C. Barbosa, M. L. Barjas-Castro, and C. L. Cesar, J. Biomed. Opt. 13, 014001 (2008).

    Article  Google Scholar 

  38. A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, Chem. Commun. 2006, 4515.

  39. D. R. Lide, CRC Handbook of Chemistry and Physics, 88th ed. (CRC, Boca Raton, FL/Taylor & Francis, London, 2007).

    Google Scholar 

  40. L. A. Klein and S. Swift, IEEE Trans. Antennas Propag. 25, 104–111 (1977).

    Article  Google Scholar 

  41. H. Gimmler, M. Schieder, M. Kowalski, U. Zimmermann, and U. Pick, Plant, Cell Environ. 14, 261 (1991).

    Article  CAS  Google Scholar 

  42. X. X. Sheng, Y. P. Ting, and S. O. Pehkonen, J. Colloid Interface Sci. 310, 661 (2007).

    Article  CAS  Google Scholar 

  43. J. A. Finlay, S. Krishnan, M. E. Callow, J. A. Callow, R. Dong, N. Asgill, K. Wong, E. J. Kramer, and C. K. Ober, Langmuir 24, 503 (2008).

    Article  CAS  Google Scholar 

  44. J. Gregory, Particles in Water: Properties and Processes (CRC, Boca Raton, FL/Taylor & Francis, London, 2005).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Rosenhahn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosenhahn, A., Finlay, J.A., Pettit, M.E. et al. Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength. Biointerphases 4, 7–11 (2009). https://doi.org/10.1116/1.3110182

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3110182