Skip to main content

Journal for Biophysical Chemistry

Formation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption

Abstract

Amphiphilic polymer coatings were prepared by first generating surface-anchored polymer layers of poly(2-hydroxyethyl methacrylate) (PHEMA) on top of flat solid substrates followed by postpolymerization reaction on the hydroxyl terminus of HEMA’s pendent group using three classes of fluorinating agents, including organosilanes, acylchlorides, and trifluoroacetic anhydride (TFAA). The distribution of the fluorinated groups inside the polymer brushes was assessed by means of a suite of analytical probes, including contact angle, ellipsometry, infrared spectroscopy, atomic force microscopy, and near-edge x-ray absorption fine structure spectroscopy. While organosilane modifiers were found to reside primarily close to the tip of the brush, acylchlorides penetrated deep inside PHEMA thus forming random copolymers P(HEMA-co-fHEMA). The reaction of TFAA with the PHEMA brush led to the formation of amphiphilic diblocks, PHEMA-b-P(HEMA-co-fHEMA), whose bottom block comprised unmodified PHEMA and the top block was made of P(HEMA-co-fHEMA) rich in the fluorinated segments. This distribution of the fluorinated groups endowed PHEMA-b-P(HEMA-co-fHEMA) with responsive properties; while in hydrophobic environment P(HEMA-co-fHEMA) segregated to the surface, when in contact with a hydrophilic medium, PHEMA partitioned at the brush surface. The surface activity of the amphiphilic coatings was tested by studying the adsorption of fibrinogen (FIB). While some FIB adsorption occurred on most coatings, the ones made by TFAA modification of PHEMA remained relatively free of FIB.

References

  1. M. Mrksich and G. M. Whitesides, Annu. Rev. Biophys. Biomol. Struct. 25, 55 (1996).

    Article  CAS  Google Scholar 

  2. J.Genzer and K.Efimenko, Biofouling 22, 339 (2006) and references therein.

  3. S. Krishnan, C. J. Weinman, and C. K. Ober, J. Mater. Chem. 18, 3405 (2008).

    Article  CAS  Google Scholar 

  4. S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

    Article  CAS  Google Scholar 

  5. S. Satzl, C. Henn, P. Christoph, P. Kurz, U. Stampfl, S. Stampfl, F. Thomas, B. Radeleff, I. Berger, M. Grunze, and G. M. Richter, Invest. Radiol. 42, 303 (2007).

    Article  CAS  Google Scholar 

  6. S. Chen, J. Zheng, L. Li, and S. Jiang, J. Am. Chem. Soc. 127, 14473 (2005).

    Article  CAS  Google Scholar 

  7. G. Cheng, Z. Zhang, S. Chen, J. D. Bryers, and S. Jiang, Biomaterials 28, 4192 (2007).

    Article  CAS  Google Scholar 

  8. L. K. Ista, M. E. Callow, J. A. Finlay, S. E. Coleman, A. C. Bolasco, R. H. Simons, J. A. Callow, and G. P. López, Appl. Environ. Microbiol. 70, 4151 (2004).

    Article  CAS  Google Scholar 

  9. D. Gan, A. Mueller, K. L. Wooley, J. Polym. Sci., Part A: Polym. Chem. 41, 3531 (2003).

    Article  CAS  Google Scholar 

  10. C. S. Gudipati, J. A. Finlay, J. A. Callow, M. E. Callow, and K. L. Wooley, Langmuir 21, 3044 (2005).

    Article  CAS  Google Scholar 

  11. C. S. Gudipati, C. M. Greenlieaf, J. A. Johnson, P. Pornpimol, K. L. Wooley, J. Polym. Sci., Part A: Polym. Chem. 42, 6193 (2004).

    Article  CAS  Google Scholar 

  12. S. Krishnan, R. Ayothi, A. Hexemer, J. A. Finlay, K. E. Sohn, R. Perry, C. K. Ober, E. J. Kramer, M. E. Callow, J. A. Callow, and D. A. Fischer, Langmuir 22, 5075 (2006).

    Article  CAS  Google Scholar 

  13. S. Schilp, A. Kueller, A. Rosenhahn, M. Grunze, M. E. Pettitt, M. E. Callow, and J. A. Callow, BioInterphases 2, 143 (2007).

    Article  CAS  Google Scholar 

  14. K. Matyjaszewski et al., Macromolecules, 32, 8716 (1999).

    Article  CAS  Google Scholar 

  15. K. L. Robinson, M. A. Khan, M. V. de Paz Banez, X. S. Wang, and S. P. Ames, Macromolecules 34, 3155 (2001).

    Article  CAS  Google Scholar 

  16. A. Ulman, Chem. Rev. (Washington, D.C.) 96, 1533 (1996).

    CAS  Google Scholar 

  17. F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).

    Article  CAS  Google Scholar 

  18. C. G. L. Khoo, J. B. Lando, and H. Ishida, J. Polym. Sci., Part B: Polym. Phys. 28, 213 (1990).

    Article  CAS  Google Scholar 

  19. X. M. Deng, E. J. Castillo, and J. M. Anderson, Biomaterials 7, 247 (1986).

    Article  CAS  Google Scholar 

  20. S. Spange, U. Eismann, S. Hohne, and E. Langhammer, Macromol. Symp. 126, 223 (1998).

    Article  CAS  Google Scholar 

  21. E. L. Brantley and G. K. Jennings, Macromolecules 37, 1476 (2004).

    Article  CAS  Google Scholar 

  22. M. R. Bantz, E. L. Brantley, R. D. Weinstein, J. Moriarty, and G. K. Jennings, J. Phys. Chem. B 108, 9787 (2004).

    Article  CAS  Google Scholar 

  23. E. L. Brantley, T. C. Holmes, and G. K. Jennings, J. Phys. Chem. B 108, 16077 (2004).

    Article  CAS  Google Scholar 

  24. G. K. Jennings and E. L. Brantley, Adv. Mater. (Weinheim, Ger.) 16, 1983 (2004).

    Article  CAS  Google Scholar 

  25. E. L. Brantley, T. C. Holmes, and G. K. Jennings, Macromolecules 38, 9730 (2005).

    Article  CAS  Google Scholar 

  26. T. I. Valdes, W. Ciridon, B. D. Ratner, and J. D. Bryers, Biomaterials 29, 1356 (2008).

    Article  CAS  Google Scholar 

  27. L. Guicai, S. Xiaoli, Y. Ping, Z. Ansha, and H. Nan, Solid State Ionics 179, 932 (2008).

    Article  Google Scholar 

  28. J. Brandrup, E. H. Immergut, E. A. Grulke, and D. Bloch, Polymer Handbook, 4th ed. (Wiley, New York, 2005), pp. VI/576.

    Google Scholar 

  29. A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly (Academic, Boston, 1991), p.4422.

    Google Scholar 

  30. The probing depth of XPS, d, is defined as 3λ sin α, where λ is the electron mean free path and α is the take-off angle. Electron mean free paths for the compounds studied are all ≈ 3 nm, as estimated from the contributions of individual electron mean free paths of C (=3.3 nm), O (=3.0 nm), F (=2.7 nm), and Si (=3.6 nm) (J. C. Vickerman, Surface Analysis: The Principle Techniques (Wiley, Chichester, 1997; (D. J. O’Connor, B. A. Sexton, and R. St. C. Smart, Surface Analysis Methods in Materials Science, 2nd ed. (Springer, Berlin, 2003) and the atomic percentage of each element in the sample determined at α =90°.

    Google Scholar 

  31. J. Stöhr, NEXAFS Spectroscopy (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  32. J. Genzer, K. Efimenko, and D. A. Fischer, Langmuir 18, 9307 (2002).

    Article  CAS  Google Scholar 

  33. Y. K. Jhon, J. J. Semler, and J. Genzer, Macromolecules 41, 6719 (2008).

    Article  CAS  Google Scholar 

  34. S. Diamanti, S. Arifuzzaman, A. Elsen, J. Genzer, and R. A. Vaia, Polymer 49, 3770 (2008).

    Article  CAS  Google Scholar 

  35. E. P. K. Currie, J. van der Gucht, O. V. Borisov, and M. A. Cohen Stuart, Langmuir 14, 5740 (1998).

    Article  CAS  Google Scholar 

  36. E. P. K. Currie, G. J. Fleer, M. A. Cohen Stuart, and O. V. Borisov, Eur. Phys. J. E 1, 27 (2000).

    Article  CAS  Google Scholar 

  37. R. A. Gage, E. P. K. Currie, and M. A. Cohen Stuart, Macromolecules 34, 5078 (2001).

    Article  CAS  Google Scholar 

  38. Z. Liu, K. Pappacena, J. Cerise, J. Kim, C. J. Durning, B. O’Shaughnessy, and R. Levicky, Nano Lett. 2, 219 (2002).

    Article  CAS  Google Scholar 

  39. J. U. Kim and B. O’Shaughnessy, Phys. Rev. Lett. 89, 238301 (2002).

    Article  Google Scholar 

  40. R. R. Bhat and J. Genzer, Appl. Surf. Sci. 252, 2549 (2006).

    Article  CAS  Google Scholar 

  41. S.Diamanti, S.Arifuzzaman, J. Genzer, and R. A.Vaia, ACS Nano (in press).

  42. We estimate that σPHEMA ≈0.45 nm−2, based on previous report, in which the grafting density was measured directly. In both cases the procedure leading to the formation of the initiator SAM was identical.

  43. A rough correlation between the brush dry thickness (h) and molecular weight of the brush can be established (M=1200h, where h is in nanometers), as detailed in M. R. Tomlinson and J. Genzer, Langmuir 21, 11552 (2005).

  44. Note that the contact angle of PHEMA brushes may vary by as much as 15° depending on the humidity present. “Bone dry” PHEMA layers typically exhibit contact angles of ≈ 55°. When moisture is present in the air, PHEMA absorbs and becomes more hydrophilic.

  45. M. Callies and D. Quéré, Soft Matter 1, 55 (2005).

    Article  CAS  Google Scholar 

  46. A. Marmur, Langmuir 22, 1400 (2006).

    Article  CAS  Google Scholar 

  47. K. E. Sohn, J. Dimitriou, J.Genzer, D. A.Fischer, C. J. Hawker, and E. J. Kramer, Langmuir (in press).

  48. S. Turgman-Cohen, D. A. Fischer, P. K. Kilpatrick, and J. Genzer (submitted).

  49. E. Triantaphyllopoulos and D. C. Triantaphyllopoulos, Biochem. J. 105, 393 (1967).

    CAS  Google Scholar 

  50. C. E. Halland H. S. Slayter, J. Biophys. Biochem. Cytol. 5, 11 (1959).

    Article  Google Scholar 

  51. J. M. Grunkemeier, W. B. Tsai, C. D. McFarland, and T. A. Horbett, Biomaterials 21, 2243 (2000).

    Article  CAS  Google Scholar 

  52. S. Spange, U. Eismann, S. Hohne, and E. Langhammer, Macromol. Symp. 126, 223 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arifuzzaman, S., Özçam, A.E., Efimenko, K. et al. Formation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption. Biointerphases 4, FA33–FA44 (2009). https://doi.org/10.1116/1.3114502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3114502