Skip to main content

Journal for Biophysical Chemistry

Experimental and theoretical investigation of chain length and surface coverage on fouling of surface grafted polypeptoids

Abstract

Numerous strategies exist to prevent biological fouling of surfaces in physiological environments; the authors’ strategy focuses on the modification of surfaces with poly-N-substituted glycine oligomers (polypeptoids). The authors previously reported the synthesis and characterization of three novel polypeptoid polymers that can be used to modify titanium oxide surfaces, rendering the surfaces resistant to adsorption of proteins, to adhesion of mammalian and bacterial cells, and to degradation by common protease enzymes. In this study, they investigated the effect of polypeptoid chain length on the antifouling properties of the modified surfaces. For these experiments, they used poly(N-methoxyethyl) glycines with lengths between 10 and 50 repeat units and determined the influence of chain length on coating thickness and density as well as resistance to protein adsorption and cellular adhesion. Short-term protein resistance remained low for all polymers, as measured by optical waveguide light mode spectroscopy, while fibroblast adhesion after several weeks indicated reduced fouling resistance for the polypeptoid-modified surfaces with the shortest chain length polymer. Experimental observations were compared to predictions obtained from a molecular theory of polymer and protein adsorption. Good agreement was found between experiment and theory for the chain length dependence of peptoid grafting density and for protein adsorption as a function of peptoid grafting density. The theoretical predictions provide specific guidelines for the surface coverage for each molecular weight for optimal antifouling. The predictions show the relationship between polymer layer structure and fouling.

References

  1. J. L. Brash, J. Biomater. Sci., Polym. Ed. 11, 1135 (2000).

    Article  CAS  Google Scholar 

  2. T. A. Horbett, Cardiovasc. Pathol. 2, Supplement 1, 137 (1993).

    Article  Google Scholar 

  3. B. D. Ratner, J. Biomed. Mater. Res. 27, 283 (1993).

    Article  CAS  Google Scholar 

  4. N. Wisniewski and M. Reichert, Colloids Surf., B 18, 197 (2000).

    Article  CAS  Google Scholar 

  5. J. D. Bryers, Colloids Surf., B 2, 9 (1994).

    Article  CAS  Google Scholar 

  6. G. G. Geesey and J. D. Bryers, in Biofilms II, edited by J. D. Bryers (Wiley-Liss, New York, 2000), pp. 237–279.

    Google Scholar 

  7. J. P. Bearinger, D. G. Castner, S. L. Golledge, S. Hubchak, and K. E. Healy, Langmuir 13, 5175 (1997).

    Article  CAS  Google Scholar 

  8. J. P. Bearinger, S. Terrettaz, R. Michel, N. Tirelli, H. Vogel, M. Textor, and J. A. Hubbell, Nature Mater. 2, 259 (2003).

    Article  CAS  Google Scholar 

  9. J. L. Dalsin, B. H. Hu, B. P. Lee, and P. B. Messersmith, J. Am. Chem. Soc. 125, 4253 (2003).

    Article  CAS  Google Scholar 

  10. J. L. Dalsin, L. Lin, S. Tosatti, J. Voros, M. Textor, and P. B. Messersmith, Langmuir 21, 640 (2005).

    Article  CAS  Google Scholar 

  11. G. M. Harbers, K. Emoto, C. Greef, S. W. Metzger, H. N. Woodward, J. J. Mascali, D. W. Grainger, and M. J. Lochhead, Chem. Mater. 19, 4405 (2007).

    Article  CAS  Google Scholar 

  12. G. L. Kenausis, J. Voros, D. L. Elbert, N. Huang, R. Hofer, L. Ruiz-Taylor, M. Textor, J. A. Hubbell, and N. D. Spencer, J. Phys. Chem. B 104, 3298 (2000).

    Article  CAS  Google Scholar 

  13. H. W. Ma, J. H. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater. (Weinheim, Ger.) 16, 338 (2004).

    Article  CAS  Google Scholar 

  14. M. Malmsten, K. Emoto, and J. M. Van Alstine, J. Colloid Interface Sci. 202, 507 (1998).

    Article  CAS  Google Scholar 

  15. S. Pasche, S. M. De Paul, J. Voros, N. D. Spencer, and M. Textor, Langmuir 19, 9216 (2003).

    Article  CAS  Google Scholar 

  16. S. J. Sofia, V. Premnath, and E. W. Merrill, Macromolecules 31, 5059 (1998).

    Article  CAS  Google Scholar 

  17. N. Xia, Y. Hu, D. W. Grainger, and D. G. Castner, Langmuir 18, 3255 (2002).

    Article  CAS  Google Scholar 

  18. D. A. Herold, K. Keil, and D. E. Bruns, Biochem. Pharmacol. 38, 73 (1989).

    Article  CAS  Google Scholar 

  19. F. Kawai, Appl. Microbiol. Biotechnol. 58, 30 (2002).

    Article  CAS  Google Scholar 

  20. F. Kawai, T. Kimura, M. Fukaya, Y. Tani, K. Ogata, T. Ueno, and H. Fukami, Appl. Environ. Microbiol. 35, 679 (1978).

    CAS  Google Scholar 

  21. S. Sharma, R. W. Johnson, and T. A. Desai, Langmuir 20, 348 (2004).

    Article  CAS  Google Scholar 

  22. S. Han, C. Kim, and D. Kwon, Polymer 38, 317 (1997).

    Article  CAS  Google Scholar 

  23. H. Bi, W. Zhong, S. Meng, J. Kong, P. Yang, and B. Liu, Anal. Chem. 78, 3399 (2006).

    Article  CAS  Google Scholar 

  24. M. Casolaro, S. Bottari, and Y. Ito, Biomacromolecules 7, 1439 (2006).

    Article  CAS  Google Scholar 

  25. S. J. Dilly, M. P. Beecham, S. P. Brown, J. M. Griffin, A. J. Clark, C. D. Griffin, J. Marshall, R. M. Napier, P. C. Taylor, and A. Marsh, Langmuir 22, 8144 (2006).

    Article  CAS  Google Scholar 

  26. W. Feng, S. Zhu, K. Ishihara, and J. L. Brash, Langmuir 21, 5980 (2005).

    Article  CAS  Google Scholar 

  27. T. Ishii, A. Wada, S. Tsuzuki, M. Casolaro, and Y. Ito, Biomacromolecules 8, 3340 (2007).

    Article  CAS  Google Scholar 

  28. R. Iwata, P. Suk-In, V. P. Hoven, A. Takahara, K. Akiyoshi, and Y. Iwasaki, Biomacromolecules 5, 2308 (2004).

    Article  CAS  Google Scholar 

  29. S. L. West, J. P. Salvage, E. J. Lobb, S. P. Armes, N. C. Billingham, A. L. Lewis, G. W. Hanlon, and A. W. Lloyd, Biomaterials 25, 1195 (2004).

    Article  CAS  Google Scholar 

  30. H. J. Griesser, P. G. Hartley, S. McArthur, K. M. McLean, L. Meagher, and H. Thissen, Smart Mater. Struct. 11, 652 (2002).

    Article  CAS  Google Scholar 

  31. N. B. Holland, Y. Qiu, M. Ruegsegger, and R. E. Marchant, Nature (London) 392, 799 (1998).

    Article  CAS  Google Scholar 

  32. S. L. McArthur, K. M. McLean, P. Kingshott, H. A. W. St John, R. C. Chatelier, and H. J. Griesser, Colloids Surf., B 17, 37 (2000).

    Article  CAS  Google Scholar 

  33. E. Österberg, K. Bergström, K. Holmberg, T. P. Schuman, J. A. Riggs, N. L. Burns, J. M. Van Alstine, and J. M. Harris, J. Biomed. Mater. Res. 29, 741 (1995).

    Article  Google Scholar 

  34. M. A. Ruegsegger and R. E. Marchant, J. Biomed. Mater. Res. 56, 159 (2001).

    Article  CAS  Google Scholar 

  35. R. Konradi, B. Pidhatika, A. Muhlebach, and M. Textor, Langmuir 24, 613 (2008).

    Article  CAS  Google Scholar 

  36. A. R. Statz, A. E. Barron, and P. B. Messersmith, Soft Matter 4, 131 (2008).

    Article  CAS  Google Scholar 

  37. A. R. Statz, R. J. Meagher, A. E. Barron, and P. B. Messersmith, J. Am. Chem. Soc. 127, 7972 (2005).

    Article  CAS  Google Scholar 

  38. D. O. Teare, W. C. Schofield, R. P. Garrod, and J. P. Badyal, J. Phys. Chem. B 109, 20923 (2005).

    Article  CAS  Google Scholar 

  39. J. H. Waite and X. Qin, Biochemistry 40, 2887 (2001).

    Article  CAS  Google Scholar 

  40. J. H. Waite and M. L. Tanzer, Science 212, 1038 (1981).

    Article  CAS  Google Scholar 

  41. F. Fang, J. Satulovsky, and I. Szleifer, Biophys. J. 89, 1516 (2005).

    Article  CAS  Google Scholar 

  42. J. Satulovsky, M. A. Carignano, and I. Szleifer, Proc. Natl. Acad. Sci. U.S.A. 97, 9037 (2000).

    Article  CAS  Google Scholar 

  43. I. Szleifer, Biophys. J. 72, 595 (1997).

    Article  CAS  Google Scholar 

  44. R. N. Zuckermann, J. M. Kerr, S. B. H. Kent, and W. H. Moos, J. Am. Chem. Soc. 114, 10646 (1992).

    Article  CAS  Google Scholar 

  45. J. N. Hilfiker and R. A. Synowicki, Solid State Technol. 41, 101 (1998).

    CAS  Google Scholar 

  46. J. A. de Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

    Article  Google Scholar 

  47. J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).

    Article  CAS  Google Scholar 

  48. I. Szleifer, Curr. Opin. Colloid Interface Sci. 1, 416 (1996).

    Article  CAS  Google Scholar 

  49. T. McPherson, A. Kidane, I. Szleifer, and K. Park, Langmuir 14, 176 (1998).

    Article  CAS  Google Scholar 

  50. F. Fang and I. Szleifer, Langmuir 18, 5497 (2002).

    Article  CAS  Google Scholar 

  51. I. Szleifer, Physica A 244, 370 (1997).

    Article  CAS  Google Scholar 

  52. See EPAPS Document No. E-BJIOBN-4-003902 for HPLC and MALDI-MS characterization of polypeptoids. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

  53. J. M. Harris and S. Zalipsky, American Chemical Society, Division of Polymer Chemistry and American Chemical Society Meeting (American Chemical Society, Washington, DC, 1997).

    Google Scholar 

  54. P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials 23, 2043 (2002).

    Article  CAS  Google Scholar 

  55. H. Lee, N. F. Scherer, and P. B. Messersmith, Proc. Natl. Acad. Sci. U.S.A. 103, 12999 (2006).

    Article  CAS  Google Scholar 

  56. R. Kurrat, B. Walivaara, A. Marti, M. Textor, P. Tengvall, J. J. Ramsden, and N. D. Spencer, Colloids Surf., B 11, 187 (1998).

    Article  CAS  Google Scholar 

  57. J. Voros, J. J. Ramsden, G. Csucs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 (2002).

    Article  CAS  Google Scholar 

  58. F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, Colloids Surf., B 24, 155 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Statz, A.R., Kuang, J., Ren, C. et al. Experimental and theoretical investigation of chain length and surface coverage on fouling of surface grafted polypeptoids. Biointerphases 4, FA22–FA32 (2009). https://doi.org/10.1116/1.3115103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3115103