Skip to main content

Journal for Biophysical Chemistry

Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries


Osteopontin is a highly charged glycoprotein present in the extra cellular matrix of a wide range of tissues. It is, in particular, relevant for biomaterials through its role in mineralized tissue remodeling. The adsorption and enzymatic cleavage of osteopontin at four different surface chemistries (methyl-, carboxylic-, and amine-terminated alkanethiol self-assembled monolayers and bare gold) have been studied utilizing a combination of the quartz crystal microbalance with dissipation and surface plasmon resonance. Full length bovine milk osteopontin was used which is well characterized with respect to post-translational modifications. Osteopontin adsorbed at all the surfaces formed thin (2–5 nm) hydrated layers with the highest amount of protein and the highest density layers observed at the hydrophobic surface. Less protein and a higher level of hydration was observed at the polar surfaces with the highest level of hydration being observed at the gold surface. The energy dissipation of these thin films (as measured by the ΔDF value) was altered at the different surface chemistries and interestingly a higher dissipation correlated with a higher density. Thrombin was able to bind and cleave the surface bound osteopontin at the hydrophobic surface. The altered levels of osteopontin binding, hydration of the layer, and susceptibility to thrombin cleavage suggest that osteopontin adopts different conformations and/or orientations at the different material surfaces.


  1. 1

    B. Kasemo, Surf. Sci. 500, 656 (2002).

    Article  CAS  Google Scholar 

  2. 2

    B. G. Keselowsky, D. M. Collard, and A. J. Garcia, J. Biomed. Mater. Res. Part A 66A, 247 (2003).

    Article  CAS  Google Scholar 

  3. 3

    A. Page-McCaw, A. J. Ewald, and Z. Werb, Nat. Rev. Mol. Cell Biol. 8, 221 (2007).

    Article  CAS  Google Scholar 

  4. 4

    F. Hook et al., Colloids Surf., B 24, 155 (2002).

    Article  CAS  Google Scholar 

  5. 5

    F. Hook, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, Anal. Chem. 73, 5796 (2001).

    Article  CAS  Google Scholar 

  6. 6

    A. G. Hemmersam, K. Rechendorff, F. Besenbacher, B. Kasemo, and D. S. Sutherland, J. Phys. Chem. C 112, 4180 (2008).

    Article  CAS  Google Scholar 

  7. 7

    K. M. Evans-Nguyen, R. R. Fuierer, B. D. Fitchett, L. R. Tolles, J. C. Conboy, and M. H. Schoenfisch, Langmuir 22, 5115 (2006).

    Article  CAS  Google Scholar 

  8. 8

    J. Sodek, B. Ganss, and M. D. McKee, Crit. Rev. Oral Biol. Med. 11, 279 (2000).

    Article  CAS  Google Scholar 

  9. 9

    E. Ruoslahti and M. D. Pierschbacher, Science 238, 491 (1987).

    Article  CAS  Google Scholar 

  10. 10

    B. Christensen, C. C. Kazanecki, T. E. Petersen, S. R. Rittling, D. T. Denhardt, and E. S. Sørensen, J. Biol. Chem. 282, 19463 (2007).

    Article  CAS  Google Scholar 

  11. 11

    B. Christensen, M. S. Nielsen, K. F. Haselmann, T. E. Petersen and E. S. Sørensen, Biochem. J. 390, 285 (2005).

    Article  CAS  Google Scholar 

  12. 12

    E. S. Sorensen, P. Hojrup, and T. E. Petersen, Protein Sci. 4, 2040 (1995).

    Article  CAS  Google Scholar 

  13. 13

    B. Christensen, T. E. Petersen, and E. S. Sorensen, Biochem. J. 411, 53 (2008).

    Article  CAS  Google Scholar 

  14. 14

    L. W. Fisher, D. A. Torchia, B. Fohr, M. F. Young, and N. S. Fedarko, Biochem. Biophys. Res. Commun. 280, 460 (2001).

    Article  CAS  Google Scholar 

  15. 15

    L. R. Rodrigues, J. A. Teixeira, F. L. Schmitt, M. Paulsson, and H. Lindmark-Mänsson, Cancer Epidemiol. Biomarkers Prev. 16, 1087 (2007).

    Article  CAS  Google Scholar 

  16. 16

    L. Y. Liu, S. F. Chen, C. M. Giachelli, B. D. Ratner, and S. Y. Jiang, J. Biomed. Mater. Res. Part A 74A, 23 (2005).

    Article  CAS  Google Scholar 

  17. 17

    Y. Chen, B. S. Bal, and J. P. Gorski, J. Biol. Chem. 267, 24871 (1992).

    CAS  Google Scholar 

  18. 18

    S. M. Martin, R. Ganapathy, T. K. Kim, D. Leach-Scampavia, C. M. Giachelli, and B. D. Ratner, J. Biomed. Mater. Res. Part A 67A, 334 (2003).

    Article  CAS  Google Scholar 

  19. 19

    F. Higashikawa, A. Eboshida, and Y. Yokosaki, FEBS Lett. 581, 2697 (2007).

    Article  CAS  Google Scholar 

  20. 20

    E. S. Sorensen and T. E. Petersen, J. Dairy Res. 60, 189 (1993).

    Article  CAS  Google Scholar 

  21. 21

    A. Krozer and M. Rodahl, J. Vac. Sci. Technol. A 15, 1704 (1997). or]22|See EPAPS Document No. E-BJIOBN-4-002903 for available material on the adsorption of OPN of different concentrations to amine-terminated surfaces, QCM-D raw data, the data in Fig. 4(a) in original form prior to baseline correction and XPS atomic concentration data for the SAMs. For more information on EPAPS, see epaps.html.

    Article  CAS  Google Scholar 

  22. 23

    M. L. Wallwork, D. A. Smith, J. Zhang, J. Kirkham, and C. Robinson, Langmuir 17, 1126 (2001).

    Article  CAS  Google Scholar 

  23. 24

    M. Rodahl, F. Hook, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, Faraday Discuss. 107, 229 (1997).

    Article  CAS  Google Scholar 

  24. 25

    G. Sauerbrey, Z. Physiother. 155, 206 (1959).

    CAS  Google Scholar 

  25. 26

    E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, J. Colloid Interface Sci. 143, 513 (1991).

    Article  CAS  Google Scholar 

  26. 27

    G. D. Ruxton, Behav. Ecol. 17, 688 (2006).

    Article  Google Scholar 

  27. 28

    E. Reimhult, C. Larsson, B. Kasemo, and F. Höök, Anal. Chem. 76, 7211 (2004).

    Article  CAS  Google Scholar 

  28. 29

    J. Malmstrom, H. Agheli, P. Kingshott, and D. S. Sutherland, Langmuir 23, 9760 (2007).

    Article  Google Scholar 

  29. 30

    I. Lundstrom, Biosens. Bioelectron. 9, 725 (1994).

    Article  Google Scholar 

  30. 31

    F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, Langmuir 13, 3422 (1997).

    Article  CAS  Google Scholar 

  31. 32

    C. Larsson, M. Rodahl, and F. Hook, Anal. Chem. 75, 5080 (2003).

    Article  CAS  Google Scholar 

  32. 33

    C. Zhou et al., Langmuir 20, 5870 (2004

    Article  CAS  Google Scholar 

  33. 34

    M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, J. Phys. Chem. B 112, 8241 (2008).

    Article  CAS  Google Scholar 

  34. 35

    P. Bingen, G. Wang, N. F. Steinmetz, M. Rodahl, and R. P. Richter, Anal. Chem. 80, 8880 (2008).

    Article  CAS  Google Scholar 

  35. 36

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    Article  CAS  Google Scholar 

  36. 37

    L. Addadi, N. Rubin, L. Scheffer, and R. Ziblat, Acc. Chem. Res. 41, 254 (2008).

    Article  CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malmström, J., Shipovskov, S., Christensen, B. et al. Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries. Biointerphases 4, 47–55 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: