Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries

Abstract

Osteopontin is a highly charged glycoprotein present in the extra cellular matrix of a wide range of tissues. It is, in particular, relevant for biomaterials through its role in mineralized tissue remodeling. The adsorption and enzymatic cleavage of osteopontin at four different surface chemistries (methyl-, carboxylic-, and amine-terminated alkanethiol self-assembled monolayers and bare gold) have been studied utilizing a combination of the quartz crystal microbalance with dissipation and surface plasmon resonance. Full length bovine milk osteopontin was used which is well characterized with respect to post-translational modifications. Osteopontin adsorbed at all the surfaces formed thin (2–5 nm) hydrated layers with the highest amount of protein and the highest density layers observed at the hydrophobic surface. Less protein and a higher level of hydration was observed at the polar surfaces with the highest level of hydration being observed at the gold surface. The energy dissipation of these thin films (as measured by the ΔDF value) was altered at the different surface chemistries and interestingly a higher dissipation correlated with a higher density. Thrombin was able to bind and cleave the surface bound osteopontin at the hydrophobic surface. The altered levels of osteopontin binding, hydration of the layer, and susceptibility to thrombin cleavage suggest that osteopontin adopts different conformations and/or orientations at the different material surfaces.

References

  1. 1

    B. Kasemo, Surf. Sci. 500, 656 (2002).

  2. 2

    B. G. Keselowsky, D. M. Collard, and A. J. Garcia, J. Biomed. Mater. Res. Part A 66A, 247 (2003).

  3. 3

    A. Page-McCaw, A. J. Ewald, and Z. Werb, Nat. Rev. Mol. Cell Biol. 8, 221 (2007).

  4. 4

    F. Hook et al., Colloids Surf., B 24, 155 (2002).

  5. 5

    F. Hook, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, Anal. Chem. 73, 5796 (2001).

  6. 6

    A. G. Hemmersam, K. Rechendorff, F. Besenbacher, B. Kasemo, and D. S. Sutherland, J. Phys. Chem. C 112, 4180 (2008).

  7. 7

    K. M. Evans-Nguyen, R. R. Fuierer, B. D. Fitchett, L. R. Tolles, J. C. Conboy, and M. H. Schoenfisch, Langmuir 22, 5115 (2006).

  8. 8

    J. Sodek, B. Ganss, and M. D. McKee, Crit. Rev. Oral Biol. Med. 11, 279 (2000).

  9. 9

    E. Ruoslahti and M. D. Pierschbacher, Science 238, 491 (1987).

  10. 10

    B. Christensen, C. C. Kazanecki, T. E. Petersen, S. R. Rittling, D. T. Denhardt, and E. S. Sørensen, J. Biol. Chem. 282, 19463 (2007).

  11. 11

    B. Christensen, M. S. Nielsen, K. F. Haselmann, T. E. Petersen and E. S. Sørensen, Biochem. J. 390, 285 (2005).

  12. 12

    E. S. Sorensen, P. Hojrup, and T. E. Petersen, Protein Sci. 4, 2040 (1995).

  13. 13

    B. Christensen, T. E. Petersen, and E. S. Sorensen, Biochem. J. 411, 53 (2008).

  14. 14

    L. W. Fisher, D. A. Torchia, B. Fohr, M. F. Young, and N. S. Fedarko, Biochem. Biophys. Res. Commun. 280, 460 (2001).

  15. 15

    L. R. Rodrigues, J. A. Teixeira, F. L. Schmitt, M. Paulsson, and H. Lindmark-Mänsson, Cancer Epidemiol. Biomarkers Prev. 16, 1087 (2007).

  16. 16

    L. Y. Liu, S. F. Chen, C. M. Giachelli, B. D. Ratner, and S. Y. Jiang, J. Biomed. Mater. Res. Part A 74A, 23 (2005).

  17. 17

    Y. Chen, B. S. Bal, and J. P. Gorski, J. Biol. Chem. 267, 24871 (1992).

  18. 18

    S. M. Martin, R. Ganapathy, T. K. Kim, D. Leach-Scampavia, C. M. Giachelli, and B. D. Ratner, J. Biomed. Mater. Res. Part A 67A, 334 (2003).

  19. 19

    F. Higashikawa, A. Eboshida, and Y. Yokosaki, FEBS Lett. 581, 2697 (2007).

  20. 20

    E. S. Sorensen and T. E. Petersen, J. Dairy Res. 60, 189 (1993).

  21. 21

    A. Krozer and M. Rodahl, J. Vac. Sci. Technol. A 15, 1704 (1997). or]22|See EPAPS Document No. E-BJIOBN-4-002903 for available material on the adsorption of OPN of different concentrations to amine-terminated surfaces, QCM-D raw data, the data in Fig. 4(a) in original form prior to baseline correction and XPS atomic concentration data for the SAMs. For more information on EPAPS, see http://www.aip.org/Pubservs/ epaps.html.

  22. 23

    M. L. Wallwork, D. A. Smith, J. Zhang, J. Kirkham, and C. Robinson, Langmuir 17, 1126 (2001).

  23. 24

    M. Rodahl, F. Hook, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, Faraday Discuss. 107, 229 (1997).

  24. 25

    G. Sauerbrey, Z. Physiother. 155, 206 (1959).

  25. 26

    E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, J. Colloid Interface Sci. 143, 513 (1991).

  26. 27

    G. D. Ruxton, Behav. Ecol. 17, 688 (2006).

  27. 28

    E. Reimhult, C. Larsson, B. Kasemo, and F. Höök, Anal. Chem. 76, 7211 (2004).

  28. 29

    J. Malmstrom, H. Agheli, P. Kingshott, and D. S. Sutherland, Langmuir 23, 9760 (2007).

  29. 30

    I. Lundstrom, Biosens. Bioelectron. 9, 725 (1994).

  30. 31

    F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, Langmuir 13, 3422 (1997).

  31. 32

    C. Larsson, M. Rodahl, and F. Hook, Anal. Chem. 75, 5080 (2003).

  32. 33

    C. Zhou et al., Langmuir 20, 5870 (2004

  33. 34

    M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, J. Phys. Chem. B 112, 8241 (2008).

  34. 35

    P. Bingen, G. Wang, N. F. Steinmetz, M. Rodahl, and R. P. Richter, Anal. Chem. 80, 8880 (2008).

  35. 36

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

  36. 37

    L. Addadi, N. Rubin, L. Scheffer, and R. Ziblat, Acc. Chem. Res. 41, 254 (2008).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malmström, J., Shipovskov, S., Christensen, B. et al. Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries. Biointerphases 4, 47–55 (2009). https://doi.org/10.1116/1.3187529

Download citation