Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Characterization of Matrigel interfaces during defined human embryonic stem cell culture

Article metrics

Abstract

Differences in attachment, proliferation, and differentiation were measured for human embryonic stem (hES) cells cultured on various substrata coated with Matrigeltm, a blend of extracellular matrix proteins derived from murine tumor cells. The authors observed that hES cells attach and grow poorly on Matrigel adsorbed onto polystyrene, while they proliferate when exposed to Matrigel adsorbed onto glass or oxygen plasma treated polystyrene (e.g., “tissue culture” treated polystyrene). Furthermore, hES cells grown on the Matrigel-coated tissue culture polystyrene are less likely to differentiate than those grown on the Matrigel-coated glass. To assess the mechanism for these observations, they replicated the cell culture interface in a quartz crystal microbalance with dissipation monitoring. In addition, they used ellipsometry and scanning electron microscopy to determine the thickness and topography of Matrigel on the varying surfaces. Matrigel formed a viscoelastic multilayer with similar thickness on all three surfaces; however, the network structure was different, where the adsorbed proteins formed a globular network on polystyrene, and fibrillar networks on the hydrophilic substrates. Matrigel networks on glass were denser than on oxygen plasma treated polystyrene, suggesting that the density and structure of the Matrigel network affects stem cell differentiation, where a denser network promoted uncontrolled hES cell differentiation and did not maintain the self-renewal phenotype.

References

  1. 1

    J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones, Science 282, 1145 (1998).

  2. 2

    2 $B. E. Reubinoff, M. F. Pera, C. Y. Fong, A. Trounson, and A. Bongso, Nat. Biotechnol. 18, 399 (2000).

  3. 3

    J. M. Fletcher et al., Cloning Stem Cells 8, 319 (2006).

  4. 4

    M. Richards, C. Y. Fong, W. K. Chan, P. C. Wong, and A. Bongso, Nat. Biotechnol. 20, 933 (2002).

  5. 5

    L. Z. Cheng, H. Hammond, Z. H. Ye, X. C. Zhan, and G. Dravid, Stem Cells 21, 131 (2003).

  6. 6

    6 $O. Genbacev et al., Fertil. Steril. 83, 1517 (2005).

  7. 7

    M. J. Martin, A. Muotri, F. Gage, and A. Varki, Nat. Med. 11, 228 (2005).

  8. 8

    L. G. Chase and M. T. Firpo, Curr. Opin. Chem. Biol. 11, 367 (2007).

  9. 9

    C. H. Xu, M. S. Inokuma, J. Denham, K. Golds, P. Kundu, J. D. Gold, and M. K. Carpenter, Nat. Biotechnol. 19, 971 (2001).

  10. 10

    Y. Li, S. Powell, E. Brunette, J. Lebkowski, and R. Mandalam, Biotechnol. Bioeng. 91, 688 (2005).

  11. 11

    S. Yao, S. Chen, J. Clark, E. Hao, G. M. Beattie, A. Hayek, and S. Ding, Proc. Natl. Acad. Sci. U.S.A. 103, 6907 (2006).

  12. 12

    G. M. Beattie, A. D. Lopez, N. Bucay, A. Hinton, M. T. Firpo, C. C. King, and A. Hayek, Stem Cells 23, 489 (2005).

  13. 13

    T. E. Ludwig et al., Nat. Biotechnol. 24, 185 (2006).

  14. 14

    B. D. Biosciences, see: http://viewer.zmags.com/publication/d5d7952b?page=124.

  15. 15

    H. K. Kleinman, M. L. McGarvey, L. A. Liotta, P. G. Robey, K. Tryggvason, and G. R. Martin, Biochemistry 21, 6188 (1982).

  16. 16

    S. L. Barker and P. J. Larocca, J. Tissue Cult. Methods 16, 151 (1994).

  17. 17

    A. S. G. Curtis, J. V. Forrester, C. McInnes, and F. Lawrie, J. Cell Biol. 97, 1500 (1983).

  18. 18

    T. Englander, D. Wiegel, L. Naji, and K. Arnold, J. Colloid Interface Sci. 179, 635 (1996).

  19. 19

    M. Fletcher and K. C. Marshall, Appl. Environ. Microbiol. 44, 184 (1982).

  20. 20

    E. F. Irwin, J. E. Ho, S. R. Kane, and K. E. Healy, Langmuir 21, 5529 (2005).

  21. 21

    J. C. Munro and C. W. Frank, Macromolecules 37, 925 (2004).

  22. 22

    L. L. Foose, H. W. Blanch, and C. J. Radke, J. Biotechnol. 132, 32 (2007).

  23. 23

    J. Brandrup and E. H. Immergut, Polymer Handbook, 2nd ed. (Wiley, New York, 1975).

  24. 24

    N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. R. Palecek, J. J. de Pablo, and N. L. Abbott, Adv. Funct. Mater. 16, 618 (2006).

  25. 25

    L. L. Foose, H. W. Blanch, and C. J. Radke, Langmuir 24, 7388 (2008).

  26. 26

    Y. W. Zhang, J. Denham, and R. S. Thies, Stem Cells Dev. 15, 943 (2006).

  27. 27

    C. H. Xu et al., Stem Cells 23, 315 (2005).

  28. 28

    See EPAPS supplementary material at E-BJIOBN-4-003904 for immunocytochemistry for the H9 cell line (Oct-4 and SSEA-4 staining on Matrigel coated onto all of the test surfaces). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

  29. 29

    S. Balamurugan, L. K. Ista, J. Yan, G. P. López, J. Fick, M. Himmelhaus, and M. Grunze, J. Am. Chem. Soc. 127, 14548 (2005).

  30. 30

    G. Sauerbrey, Z. Phys. 155, 206 (1959).

  31. 31

    F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, Proc. Natl. Acad. Sci. U.S.A. 95, 12271 (1998).

  32. 32

    M. V. Voinova, M. Rodahl, M. Jonson, and B. Kasemo, Phys. Scr. 59, 391 (1999).

  33. 33

    F. Fang, J. Satulovsky, and I. Szleifer, Biophys. J. 89, 1516 (2005).

  34. 34

    F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, Anal. Chem. 73, 5796 (2001).

  35. 35

    K. C. Hansen, L. Kiemele, O. Maller, J. O’Brien, A. Shankar, J. Fornetti, and P. Schedin, Mol. Cell Proteomics 8, 1648 (2009).

  36. 36

    R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Dev. Cell 6, 483 (2004).

  37. 37

    K. Bhadriraju, M. Yang, S. A. Ruiz, D. Pirone, J. Tan, and C. S. Chen, Exp. Cell Res. 313, 3616 (2007).

  38. 38

    G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells, and L. G. Griffith, J. Cell Sci. 113, 1677 (2000).

  39. 39

    D. L. Elbert and J. A. Hubbell, Biomacromolecules 2, 430 (2001).

  40. 40

    M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, and J. P. Spatz, ChemPhysChem 5, 383 (2004).

  41. 41

    D. E. Discher, P. Janmey, and Y. L. Wang, Science 310, 1139 (2005).

  42. 42

    L. A. Flanagan, Y. E. Ju, B. Marg M. Osterfield, and P. A. Janmey, NeuroReport 13, 2411 (2002).

  43. 43

    R. J. Pelham and Y. L. Wang, Proc. Natl. Acad. Sci. U.S.A. 94, 13661 (1997).

  44. 44

    M. J. Paszek et al., Cancer Cells 8, 241 (2005).

  45. 45

    D. P. McDaniel, G. A. Shaw, J. T. Elliott, K. Bhadriraju, C. Meuse, K. H. Chung, and A. Plant, Biophys. J. 92, 1759 (2007).

  46. 46

    M. T. Thompson, M. C. Berg, I. S. Tobias, M. F. Rubner, and K. J. Van Vliet, Biomaterials 26, 6836 (2005).

  47. 47

    T. Boontheekul, E. E. Hill, H. J. Kong, and D. J. Mooney, Tissue Eng. 13, 1431 (2007).

  48. 48

    A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, Biophys. J. 86, 617 (2004).

  49. 49

    S. R. Peyton, C. B. Raub, V. P. Keschrumrus, and A. J. Putnam, Biomaterials 27, 4881 (2006).

Download references

Author information

Correspondence to Kevin E. Healy.

Rights and permissions

Reprints and Permissions

About this article