Skip to main content

Journal for Biophysical Chemistry

Characterization of Matrigel interfaces during defined human embryonic stem cell culture

Abstract

Differences in attachment, proliferation, and differentiation were measured for human embryonic stem (hES) cells cultured on various substrata coated with Matrigeltm, a blend of extracellular matrix proteins derived from murine tumor cells. The authors observed that hES cells attach and grow poorly on Matrigel adsorbed onto polystyrene, while they proliferate when exposed to Matrigel adsorbed onto glass or oxygen plasma treated polystyrene (e.g., “tissue culture” treated polystyrene). Furthermore, hES cells grown on the Matrigel-coated tissue culture polystyrene are less likely to differentiate than those grown on the Matrigel-coated glass. To assess the mechanism for these observations, they replicated the cell culture interface in a quartz crystal microbalance with dissipation monitoring. In addition, they used ellipsometry and scanning electron microscopy to determine the thickness and topography of Matrigel on the varying surfaces. Matrigel formed a viscoelastic multilayer with similar thickness on all three surfaces; however, the network structure was different, where the adsorbed proteins formed a globular network on polystyrene, and fibrillar networks on the hydrophilic substrates. Matrigel networks on glass were denser than on oxygen plasma treated polystyrene, suggesting that the density and structure of the Matrigel network affects stem cell differentiation, where a denser network promoted uncontrolled hES cell differentiation and did not maintain the self-renewal phenotype.

References

  1. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones, Science 282, 1145 (1998).

    Article  CAS  Google Scholar 

  2. 2 $B. E. Reubinoff, M. F. Pera, C. Y. Fong, A. Trounson, and A. Bongso, Nat. Biotechnol. 18, 399 (2000).

    Article  CAS  Google Scholar 

  3. J. M. Fletcher et al., Cloning Stem Cells 8, 319 (2006).

    Article  CAS  Google Scholar 

  4. M. Richards, C. Y. Fong, W. K. Chan, P. C. Wong, and A. Bongso, Nat. Biotechnol. 20, 933 (2002).

    Article  CAS  Google Scholar 

  5. L. Z. Cheng, H. Hammond, Z. H. Ye, X. C. Zhan, and G. Dravid, Stem Cells 21, 131 (2003).

    Article  CAS  Google Scholar 

  6. 6 $O. Genbacev et al., Fertil. Steril. 83, 1517 (2005).

    Article  Google Scholar 

  7. M. J. Martin, A. Muotri, F. Gage, and A. Varki, Nat. Med. 11, 228 (2005).

    Article  CAS  Google Scholar 

  8. L. G. Chase and M. T. Firpo, Curr. Opin. Chem. Biol. 11, 367 (2007).

    Article  CAS  Google Scholar 

  9. C. H. Xu, M. S. Inokuma, J. Denham, K. Golds, P. Kundu, J. D. Gold, and M. K. Carpenter, Nat. Biotechnol. 19, 971 (2001).

    Article  CAS  Google Scholar 

  10. Y. Li, S. Powell, E. Brunette, J. Lebkowski, and R. Mandalam, Biotechnol. Bioeng. 91, 688 (2005).

    Article  CAS  Google Scholar 

  11. S. Yao, S. Chen, J. Clark, E. Hao, G. M. Beattie, A. Hayek, and S. Ding, Proc. Natl. Acad. Sci. U.S.A. 103, 6907 (2006).

    Article  CAS  Google Scholar 

  12. G. M. Beattie, A. D. Lopez, N. Bucay, A. Hinton, M. T. Firpo, C. C. King, and A. Hayek, Stem Cells 23, 489 (2005).

    Article  CAS  Google Scholar 

  13. T. E. Ludwig et al., Nat. Biotechnol. 24, 185 (2006).

    Article  CAS  Google Scholar 

  14. B. D. Biosciences, see: http://viewer.zmags.com/publication/d5d7952b?page=124.

  15. H. K. Kleinman, M. L. McGarvey, L. A. Liotta, P. G. Robey, K. Tryggvason, and G. R. Martin, Biochemistry 21, 6188 (1982).

    Article  CAS  Google Scholar 

  16. S. L. Barker and P. J. Larocca, J. Tissue Cult. Methods 16, 151 (1994).

    Article  Google Scholar 

  17. A. S. G. Curtis, J. V. Forrester, C. McInnes, and F. Lawrie, J. Cell Biol. 97, 1500 (1983).

    Article  CAS  Google Scholar 

  18. T. Englander, D. Wiegel, L. Naji, and K. Arnold, J. Colloid Interface Sci. 179, 635 (1996).

    Article  Google Scholar 

  19. M. Fletcher and K. C. Marshall, Appl. Environ. Microbiol. 44, 184 (1982).

    CAS  Google Scholar 

  20. E. F. Irwin, J. E. Ho, S. R. Kane, and K. E. Healy, Langmuir 21, 5529 (2005).

    Article  CAS  Google Scholar 

  21. J. C. Munro and C. W. Frank, Macromolecules 37, 925 (2004).

    Article  CAS  Google Scholar 

  22. L. L. Foose, H. W. Blanch, and C. J. Radke, J. Biotechnol. 132, 32 (2007).

    Article  CAS  Google Scholar 

  23. J. Brandrup and E. H. Immergut, Polymer Handbook, 2nd ed. (Wiley, New York, 1975).

    Google Scholar 

  24. N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. R. Palecek, J. J. de Pablo, and N. L. Abbott, Adv. Funct. Mater. 16, 618 (2006).

    Article  CAS  Google Scholar 

  25. L. L. Foose, H. W. Blanch, and C. J. Radke, Langmuir 24, 7388 (2008).

    Article  CAS  Google Scholar 

  26. Y. W. Zhang, J. Denham, and R. S. Thies, Stem Cells Dev. 15, 943 (2006).

    Article  CAS  Google Scholar 

  27. C. H. Xu et al., Stem Cells 23, 315 (2005).

    Article  CAS  Google Scholar 

  28. See EPAPS supplementary material at E-BJIOBN-4-003904 for immunocytochemistry for the H9 cell line (Oct-4 and SSEA-4 staining on Matrigel coated onto all of the test surfaces). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

  29. S. Balamurugan, L. K. Ista, J. Yan, G. P. López, J. Fick, M. Himmelhaus, and M. Grunze, J. Am. Chem. Soc. 127, 14548 (2005).

    Article  CAS  Google Scholar 

  30. G. Sauerbrey, Z. Phys. 155, 206 (1959).

    Article  CAS  Google Scholar 

  31. F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, Proc. Natl. Acad. Sci. U.S.A. 95, 12271 (1998).

    Article  Google Scholar 

  32. M. V. Voinova, M. Rodahl, M. Jonson, and B. Kasemo, Phys. Scr. 59, 391 (1999).

    Article  CAS  Google Scholar 

  33. F. Fang, J. Satulovsky, and I. Szleifer, Biophys. J. 89, 1516 (2005).

    Article  CAS  Google Scholar 

  34. F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, Anal. Chem. 73, 5796 (2001).

    Article  Google Scholar 

  35. K. C. Hansen, L. Kiemele, O. Maller, J. O’Brien, A. Shankar, J. Fornetti, and P. Schedin, Mol. Cell Proteomics 8, 1648 (2009).

    Article  CAS  Google Scholar 

  36. R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Dev. Cell 6, 483 (2004).

    Article  CAS  Google Scholar 

  37. K. Bhadriraju, M. Yang, S. A. Ruiz, D. Pirone, J. Tan, and C. S. Chen, Exp. Cell Res. 313, 3616 (2007).

    Article  CAS  Google Scholar 

  38. G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells, and L. G. Griffith, J. Cell Sci. 113, 1677 (2000).

    CAS  Google Scholar 

  39. D. L. Elbert and J. A. Hubbell, Biomacromolecules 2, 430 (2001).

    Article  CAS  Google Scholar 

  40. M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, and J. P. Spatz, ChemPhysChem 5, 383 (2004).

    Article  CAS  Google Scholar 

  41. D. E. Discher, P. Janmey, and Y. L. Wang, Science 310, 1139 (2005).

    Article  CAS  Google Scholar 

  42. L. A. Flanagan, Y. E. Ju, B. Marg M. Osterfield, and P. A. Janmey, NeuroReport 13, 2411 (2002).

    Article  Google Scholar 

  43. R. J. Pelham and Y. L. Wang, Proc. Natl. Acad. Sci. U.S.A. 94, 13661 (1997).

    Article  CAS  Google Scholar 

  44. M. J. Paszek et al., Cancer Cells 8, 241 (2005).

    Article  CAS  Google Scholar 

  45. D. P. McDaniel, G. A. Shaw, J. T. Elliott, K. Bhadriraju, C. Meuse, K. H. Chung, and A. Plant, Biophys. J. 92, 1759 (2007).

    Article  CAS  Google Scholar 

  46. M. T. Thompson, M. C. Berg, I. S. Tobias, M. F. Rubner, and K. J. Van Vliet, Biomaterials 26, 6836 (2005).

    Article  CAS  Google Scholar 

  47. T. Boontheekul, E. E. Hill, H. J. Kong, and D. J. Mooney, Tissue Eng. 13, 1431 (2007).

    Article  CAS  Google Scholar 

  48. A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, Biophys. J. 86, 617 (2004).

    Article  CAS  Google Scholar 

  49. S. R. Peyton, C. B. Raub, V. P. Keschrumrus, and A. J. Putnam, Biomaterials 27, 4881 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. Healy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohen, N.T., Little, L.E. & Healy, K.E. Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 4, 69–79 (2009). https://doi.org/10.1116/1.3274061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3274061