Skip to main content

Journal for Biophysical Chemistry

Assembly and structure of α-helical peptide films on hydrophobic fluorocarbon surfaces

Abstract

The structure, orientation, and formation of amphiphilic α-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The α-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide π is likely due to the broad distribution of amide bond orientations inherent to the α-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm−1 related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm−1 indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm−1 confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.

References

  1. T. A. Horbett and J. L. Brash, Proteins at Interfaces II: Fundamentals and Applications (American Chemical Society, Washington D. C., 1995).

  2. B. D. Ratner, Macromol. Symp. 130, 327 (1997).

    Article  Google Scholar 

  3. B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).

    Article  CAS  Google Scholar 

  4. D. H. Fremont, M. Matsumura, E. A. Stura, P. A. Peterson, and I. A. Wilson, Science 257, 919 (1992).

    Article  CAS  Google Scholar 

  5. C. J. Russell, T. E. Thorgeirsson, and Y. K. Shin, Biochemistry 35, 9526 (1996).

    Article  CAS  Google Scholar 

  6. P. Krüger, M. Schalke, Z. Wang, R. H. Notter, R. A. Dluhy, and M. Losche, Biophys. J. 77, 903 (1999).

    Article  Google Scholar 

  7. D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    Article  CAS  Google Scholar 

  8. W. F. DeGrado and J. D. Lear, J. Am. Chem. Soc. 107, 7684 (1985).

    Article  CAS  Google Scholar 

  9. A. Kerth, A. Erbe, M. Dathe, and A. Blume, Biophys. J. 86, 3750 (2004).

    Article  CAS  Google Scholar 

  10. L. Beven, S. Castano, J. Dufourcq, A. Wieslander, and H. Wroblewski, Eur. J. Biochem. 270, 2207 (2003).

    Article  CAS  Google Scholar 

  11. S. Castano, B. Desbat, M. Laguerre, and J. Dufourcq, Biochim. Biophys. Acta 1416, 176 (1999).

    Article  CAS  Google Scholar 

  12. D. Dieudonné, A. Gericke, C. R. Flach, X. Jiang, R. S. Farid, and R. Mendelsohn, J. Am. Chem. Soc. 120, 792 (1998).

    Article  Google Scholar 

  13. S. Stewart and P. M. Fredericks, Spectrochim. Acta, Part A 55, 1615 (1999).

    Article  Google Scholar 

  14. T. M. Herne, A. M. Ahern, and R. L. Garrell, Anal. Chim. Acta 246, 75 (1991).

    Article  CAS  Google Scholar 

  15. O. Mermut, D. C. Phillips, R. L. York, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Am. Chem. Soc. 128, 3598 (2006).

    Article  CAS  Google Scholar 

  16. N. P. Samuel, Ph.D. thesis, University of Washington, 2005.

  17. T. Weidner, N. F. Breen, G. P. Dobny, and D. G. Castner, J. Phys. Chem. B 113, 15423 (2009).

    Article  CAS  Google Scholar 

  18. N. F. Breen, T. Weidner, K. Li, D. G. Castner, and G. P. Drobny, J. Am. Chem. Soc. 131, 14148 (2009).

    Article  CAS  Google Scholar 

  19. T. Weidner, J. Apte, L. J. Gamble, and D. G. Castner, “Probing the Orientation and Conformation of α-Helix and β-Strand Model Peptides on Self-Assembled Monolayers Using Sum Frequency Generation and NEXAFS Spectroscopy,” Langmuir (in press).

  20. R. L. York, O. Mermut, D. C. Phillips, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Phys. Chem. C 111, 8866 (2007).

    Article  CAS  Google Scholar 

  21. D. C. Phillips, R. L. York, O. Mermut, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Phys. Chem. C 111, 255 (2007).

    Article  CAS  Google Scholar 

  22. P. D. Drumheller, D. L. Elbert, and J. A. Hubbell, Biotechnol. Bioeng. 43, 772 (1994).

    Article  CAS  Google Scholar 

  23. K. P. Walluscheck, G. Steinhoff, S. Kelm, and A. Haverich, Eur. J. Vasc. Endovasc Surg. 12, 321 (1996).

    Article  CAS  Google Scholar 

  24. J. A. Neff, K. D. Caldwell, and P. A. Tresco, J. Biomed. Mater. Res. 40, 511 (1998).

    Article  CAS  Google Scholar 

  25. T. Pakalns, K. L. Haverstick, G. B. Fields, J. B. McCarthy, D. L. Mooradian, and M. Tirrell, Biomaterials 20, 2265 (1999).

    Article  CAS  Google Scholar 

  26. K. Bhadriraju and L. K. Hansen, Biomaterials 21, 267 (2000).

    Article  CAS  Google Scholar 

  27. I. Elloumi, R. Kobayashi, H. Funabashi, M. Mie, and E. Kobatake, Biomaterials 27, 3451 (2006).

    Article  CAS  Google Scholar 

  28. M. I. Janssen, M. B. M. van Leeuwen, K. Scholtmeijer, T. G. van Kooten, L. Dijkhuizen, and H. A. B. Wosten, Biomaterials 23, 4847 (2002).

    Article  CAS  Google Scholar 

  29. M. Rodahl, F. Hook, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).

    Article  CAS  Google Scholar 

  30. L. S. Jung, J. S. Shumaker-Parry, C. T. Campbell, S. S. Yee, and M. H. Gelb, J. Am. Chem. Soc. 122, 4177 (2000).

    Article  CAS  Google Scholar 

  31. X. Chen, M. L. Clarke, J. Wang, and Z. Chen, Int. J. Mod. Phys. B 19, 511, 32691 (2005).

    Google Scholar 

  32. J. Wang, X. Y. Chen, M. L. Clarke, and Z. Chen, J. Phys. Chem. B 110, 513, 5017 (2006).

    Article  CAS  Google Scholar 

  33. R. L. York, W. K. Browne, P. L. Geissler, and G. A. Somorjai, Isr. J. Chem. 47, 51 (2007).

    Article  CAS  Google Scholar 

  34. J. R. Long, N. Oyler, G. P. Drobny, and P. S. Stayton, J. Am. Chem. Soc. 124, 6297 (2002).

    Article  CAS  Google Scholar 

  35. P. D. d’Agostino, Treatment and Etching of Polymers (Academic, San Diego, 1990).

    Google Scholar 

  36. M. C. Shen, Y. V. Pan, M. S. Wagner, K. D. Hauch, D. G. Castner, B. D. Ratner, and T. A. Horbett, J. Biomater. Sci., Polym. Ed. 12, 961 (2001).

    Article  CAS  Google Scholar 

  37. M. D. Garrison, R. Luginbuhl, R. M. Overney, and B. D. Ratner, Thin Solid Films 352, 13 (1999).

    Article  CAS  Google Scholar 

  38. R. W. Paynter, Surf. Interface Anal. 3, 186 (1981).

    Article  CAS  Google Scholar 

  39. J. S. Apte, G. Collier, R. A. Latour, L. J. Gamble and D. G. Castner, “XPS and ToF-SIMS Investigation of α-Helical and β-Strand Peptide Adsorption onto SAMs,” Langmuir (to be published).

  40. M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).

    Article  CAS  Google Scholar 

  41. J. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 1992).

    Google Scholar 

  42. C. Cotton, A. Glidle, G. Beamson, and J. M. Cooper, Langmuir 14, 5139 (1998).

    Article  CAS  Google Scholar 

  43. Y. Zubavichus, M. Zharnikov, A. Schaporenko, and M. Grunze, J. Electron Spectrosc. Relat. Phenom. 134, 25 (2004).

    Article  CAS  Google Scholar 

  44. Y. Zubavichus, M. Zharnikov, A. Shaporenko, O. Fuchs, L. Weinhardt, C. Heske, E. Umbach, J. D. Denlinger, and M. Grunze, J. Phys. Chem. A 108, 4557 (2004).

    Article  CAS  Google Scholar 

  45. K. Ozawa, T. Hasegawa, K. Edamoto, K. Takahashi, and M. Kamada, J Phys. Chem. B 106, 9380 (2002).

    Article  CAS  Google Scholar 

  46. J. E. Baio, T. Weidner, J. Brison, D. J. Graham, L. J. Gamble, and D. G. Castner, J. Electron Spectrosc. Relat. Phenom. 172, 2 (2009).

    Article  CAS  Google Scholar 

  47. M. L. Gordon, G. Cooper, C. Morin, T. Araki, C. C. Turci, K. Kaznatcheev, and A. P. Hitchcock, J. Phys. Chem. A 107, 6144 (2003).

    Article  CAS  Google Scholar 

  48. C. D. Bain, J. Chem. Soc., Faraday Trans. 91, 1281 (1995).

    Article  CAS  Google Scholar 

  49. P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1987).

    Article  CAS  Google Scholar 

  50. Q. Du, E. Freysz, and Y. R. Shen, Science 264, 826 (1994).

    Article  CAS  Google Scholar 

  51. N. Ji, V. Ostroverkhov, C. S. Tian, and Y. R. Shen, Phys. Rev. Lett. 100, 096102 (2008).

    Article  CAS  Google Scholar 

  52. C. S. Tian, N. Ji, G. A. Waychunas, and Y. R. Shen, J. Am. Chem. Soc. 130, 13033 (2008).

    Article  CAS  Google Scholar 

  53. M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, J. Phys. Chem. B 104, 576 (2000).

    Article  CAS  Google Scholar 

  54. M. R. Watry and G. L. Richmond, J. Phys. Chem. B 106, 12517 (2002).

    Article  CAS  Google Scholar 

  55. B. R. Singh, Infrared Analysis of Peptides and Proteins (American Chemical Society, Washington, D.C., 2000).

  56. X. Chen, J. Wang, J. J. Sniadecki, M. A. Even, and Z. Chen, Langmuir 21, 2662 (2005).

    Article  CAS  Google Scholar 

  57. R. L. York, G. J. Holinga, D. R. Guyer, K. R. McCrea, R. S. Ward, and G. A. Somorjai, Appl. Spectrosc. 62, 937 (2008).

    Article  CAS  Google Scholar 

  58. M. L. Clarke, J. Wang, and Z. Chen, J. Phys. Chem. B 109, 22027 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Castner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidner, T., Samuel, N.T., McCrea, K. et al. Assembly and structure of α-helical peptide films on hydrophobic fluorocarbon surfaces. Biointerphases 5, 9–16 (2010). https://doi.org/10.1116/1.3317116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3317116