Skip to main content

Journal for Biophysical Chemistry

Effect of the polymer chain length of poly(N-isopropylacrylamide) on the temperature-responsive phase transition behavior of its conjugates with [60]fullerene

Abstract

In order to develop biomedical materials with specific functionalities, thermoresponsive conjugates [poly(N-isopropylacrylamide)-C60 (PIPAAm-C60) ]of [60]fullerene (C60) and PIPAAm with two different polymer chain lengths (4 and 20 kDa) were synthesized by atom transfer radical polymerization. The effects of the polymer chain length on the temperature-responsive phase transition behavior of the synthetic PIPAAm-C60 conjugates were probed by means of various physicochemical techniques. The coexistence of unimers and molecular assemblies of PIPAAm-C60 was observed by gel permeation chromatography and dynamic light scattering studies in two PIPAAm-C60 aqueous solutions below their lower critical solution temperatures (LCSTs). Additionally, below their LCSTs, differences in PIPAAm chain length gave rise to changes in the composition of the unimers and molecular assemblies. In response to temperature, the absorbance of the PIPAAm-C60 aqueous solution changed according to a two-step behavior profile. Increasing temperature during the primary stage, where a change in the absorbance of the PIPAAm-C60 aqueous solution took place, did not change the transition temperature, regardless of the solution concentration of PIPAAm-C60. This absorbance change was associated with the phase transition of the molecular assemblies of PIPAAm-C60. However, at the second stage, the transition temperature shifted to a higher value with the decrease in the concentration of PIPAAm-C60, in the same manner as free PIPAAm chains. The second change was associated with the phase transition of the unimeric PIPAAm-C60. Differences in PIPAAm chain length gave rise to the change in the phase transition behavior of PIPAAm-C60 aqueous solution. Therefore, the chain length of PIPAAm was found to be a predominant factor involved in the solution characteristics of PIPAAm-C60. Consequently, the PIPAAm-C60 is expected to be an intelligent biomaterial possessing heat-induced accumulation and bioactivities.

References

  1. P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, Science 254, 1183 (1991).

    Article  CAS  Google Scholar 

  2. L. L. Dugan et al., Proc. Natl. Acad. Sci. U.S.A. 94, 9434 (1997).

    Article  CAS  Google Scholar 

  3. S. H. Friedman, D. L. Decamp, R. P. Sijbesma, G. Srdanov, F. Wudl, and G. L. Kenyon, J. Am. Chem. Soc. 115, 6506 (1993).

    Article  CAS  Google Scholar 

  4. H. Tokuyama, S. Yamago, E. Nakamura, T. Shiraki, and Y. Sugiura, J. Am. Chem. Soc. 115, 7918 (1993).

    Article  CAS  Google Scholar 

  5. Y. Tabata, Y. Murakami, and Y. Ikada, Jpn. J. Cancer Res. 88, 1108 (1997).

    Article  CAS  Google Scholar 

  6. E. Nakamura and A. Isobe, Acc. Chem. Res. 36, 807 (2003).

    Article  CAS  Google Scholar 

  7. L. Y. Chiang, J. B. Bhonsle, L. Wang, S. F. Shu, T. M. Chang, and J. R. Hwu, Tetrahedron 52, 4963 (1996).

    Article  CAS  Google Scholar 

  8. M. Brettreich and A. Hirsch, Tetrahedron Lett. 39, 2731 (1998).

    Article  CAS  Google Scholar 

  9. K. E. Geckeler, Trends Polym. Sci. 2, 355 (1994).

    CAS  Google Scholar 

  10. S. Yamago et al., Chem. Biol. 2, 385 (1995).

    Article  CAS  Google Scholar 

  11. A. Tamura, K. Uchida, and H. Yajima, Chem. Lett. 35, 282 (2006).

    Article  CAS  Google Scholar 

  12. M. Heskins and J. E. Guillet, J. Macromol. Sci., Chem. A2, 1441 (1968).

    Google Scholar 

  13. R. Yoshida, K. Sakai, T. Okano, and Y. Sakurai, J. Biomater. Sci., Polym. Ed. 6, 585 (1995).

    Article  Google Scholar 

  14. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, and T. Okano, Nature (London) 374, 240 (1995).

    Article  CAS  Google Scholar 

  15. Y. Xia, X. Yin, N. A. D. Burke, and H. D. H. Stöver, Macromolecules 38, 5937 (2005).

    Article  CAS  Google Scholar 

  16. Y. Xia, N. A. D. Burke, and H. D. H. Stöver, Macromolecules 39, 2275 (2006).

    Article  CAS  Google Scholar 

  17. M. Nakayama and T. Okano, Biomacromolecules 6, 2320 (2005).

    Article  CAS  Google Scholar 

  18. J. E. Chung, M. Yokoyama, and T. Okano, J. Controlled Release 65, 93 (2000).

    Article  CAS  Google Scholar 

  19. J. Queffelec, S. G. Gaynor, and K. Matyjaszewski, Macromolecules 33, 8629 (2000).

    Article  CAS  Google Scholar 

  20. See supplementary material at http://dx.doi.org/10.1116/1.3319348 E-BJIOBN-5-002001 for details on three supplementary experimental data: (1) the 1H-NMR spectra of PIPAAm-Cl and PIPAAm-C60, (2) the transmittance profile of PIPAAm-C60 in response to reversible temperature changes, and (3) the verification experiment of our suggestion that unreacted PIPAAm-Cl would not trigger the two-step phase transition behavior of the PIPAAm-C60.

  21. M. L. Sushko, H. Tenhu, and S. I. Klenin, Polymer 43, 2769 (2002).

    Article  CAS  Google Scholar 

  22. C. Ungurenasu and A. Airinei, J. Med. Chem. 43, 3186 (2000).

    Article  CAS  Google Scholar 

  23. S. Dai, P. Ravi, C. H. Tan, and K. C. Tam, Langmuir 20, 8569 (2004).

    Article  CAS  Google Scholar 

  24. D. G. Lessard, M. Ousalem, and X. X. Zhu, Can. J. Chem. 79, 1870 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Yajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, K., Tamura, A. & Yajima, H. Effect of the polymer chain length of poly(N-isopropylacrylamide) on the temperature-responsive phase transition behavior of its conjugates with [60]fullerene. Biointerphases 5, 17–21 (2010). https://doi.org/10.1116/1.3319348

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3319348