Skip to main content

Journal for Biophysical Chemistry

Characterization and cytocompatibility of hybrid aminosilane-agarose hydrogel scaffolds

Abstract

Agarose hydrogels containing aminopropyl triethoxy silane (APTS) have been prepared and evaluated as scaffolds for adhesion and proliferation of human mesenchymal stem cells (hMSCs). The preparation of the hydrogels involved the conventional melting of agarose in water followed by addition of APTS as functional group carrier. The resulting hydrogel supports have been studied by Fourier transformed infrared spectroscopy in order to get an insight into the hybrid molecular structure. X-ray photoelectron spectroscopy has been used for the analysis of the surface chemical composition of the hydrogels. It is deduced from these data that the resulting hybrid structure presents two phases with a clear tendency toward APTS surface segregation. Moreover, the observation of the desiccated hydrogel surfaces by atomic force microscopy shows that the films acquire a filament-mesh structure for increasing APTS content, while the pure agarose supports exhibit a granular structure. As a result of such a structure, the hydrogel surfaces show a hydrophobic behavior, as determined by water contact angle measurements. The biocompatibility of such platforms is supported by adhesion-proliferation assays performed with hMSCs. It is concluded that although adhesion is lower on APTS rich scaffolds, the proliferation rate on these surfaces is higher so that total number of proliferating cells does not significantly depend on APTS content in the hydrogels.

References

  1. 1

    Y. L. Cao, A. Rodriguez, M. Vacanti, C. Ibarra, C. Arevalo, and C. A. Vacanti, J. Biomater. Sci., Polym. Ed. 9, 475 (1998).

    Article  CAS  Google Scholar 

  2. 2

    G. P. Dillon, X. J. Yu, A. Sridharan, J. P. Ranieri, and R. V. J. Bellamkonda, Biomater. Sci., Polym. Ed. 9, 1049 (1998).

    Article  CAS  Google Scholar 

  3. 3

    F. Tortelli and R. Cancedda, Eur. Cells Mater 17, 1 (2009).

    CAS  Google Scholar 

  4. 4

    M. M. Stevens, M. Mayer, D. G. Anderson, D. B. Weibel, G. M. Whitesides, and R. Langer, Biomaterials 26, 7636 (2005).

    Article  CAS  Google Scholar 

  5. 5

    G. D. Nicodemus and S. J. Bryant, Tissue. Engin. B 14, 149 (2008).

    Article  CAS  Google Scholar 

  6. 6

    6S. J. Lee, T. Kang, J. W. Rhie, and D. W. Cho, Sens. Mater. 19, 445 (2007).

    Google Scholar 

  7. 7

    C. R. Nuttelman, D. J. Mortisen, S. M. Henry, and K. S. Anseth, J. Biomed. Mater. Res. 57, 217 (2001).

    Article  CAS  Google Scholar 

  8. 8

    J. C. Tong and S. L. Yao, J. Bioact. Compat. Polym. 22, 232 (2007).

    Article  CAS  Google Scholar 

  9. 9

    9G. Zhang, D. Wang, Z. Z. Gu, and H. Mohwald, Langmuir 21, 9143 (2005).

    Article  CAS  Google Scholar 

  10. 10

    10S. E. Stabenfeldt, A. J. Garcia, and M. C. LaPlaca, J. Biomed. Mater. Res. Part A 77A, 718 (2006).

    Article  CAS  Google Scholar 

  11. 11

    M. C. Tate, D. A. Shear, S. W. Hoffman, D. G. Stein, and M. C. LaPlaca, Biomaterials 22, 1113 (2001).

    Article  CAS  Google Scholar 

  12. 12

    C. Vinatier et al., J. Biomed. Mater. Res. Part A 80A, 66 (2007).

    Article  CAS  Google Scholar 

  13. 13

    13A. Costantini, G. Luciani, B. Silvestri, F. Tescione, and F. Branda, J. Biomed. Mater. Res., Part B: Appl. Biomater. 86B, 98 (2008).

    Article  CAS  Google Scholar 

  14. 14

    M. A. Bokhari, G. Akay, S. G. Zhang, and M. A. Birch, Biomaterials 26, 5198 (2005).

    Article  CAS  Google Scholar 

  15. 15

    C. P. Huang, X. M. Chen, and Z. Q. Chen, Mater. Lett. 62, 1499 (2008).

    Article  CAS  Google Scholar 

  16. 16

    16C. Tsioptsias, I. Tsivintzelis, L. Papadopoulou, and C. Pallayiotou, Mater. Sci. Eng., C 29, 159 (2009).

    Article  CAS  Google Scholar 

  17. 17

    T. Taguchi, Y. Sawabe, H. Kobayashi, Y. Moriyoshi, K. Kataoka, and J. Tanaka, Mater. Sci. Eng., C 24, 881 (2004).

    Article  Google Scholar 

  18. 18

    M. D. Weir, H. H. K. Xu, and C. G. Simon, J. Biomed. Mater. Res. Part A 77A, 487 (2006).

    Article  CAS  Google Scholar 

  19. 19

    M. Endres et al., Tissue Eng. 9, 689 (2003).

    Article  CAS  Google Scholar 

  20. 20

    H. P. Tan, C. R. Chu, K. A. Payne, and K. G. Marra, Biomaterials 30, 2499 (2009).

    Article  CAS  Google Scholar 

  21. 21

    S. A. Zawko, S. Suri, Q. Truong, and C. E. Schmidt, Acta Biomater. 5, 14 (2009).

    Article  CAS  Google Scholar 

  22. 22

    C. W. Yung, L. Q. Wu, J. A. Tullman, G. F. Payne, W. E. Bentley, and T. A. Barbari, J. Biomed. Mater. Res. Part A 83A, 1039 (2007).

    Article  CAS  Google Scholar 

  23. 23

    K. Hamada, M. Hirose, T. Yamashita, and H. Ohgushil, J. Biomed. Mater. Res. Part A 84A, 128 (2008).

    Article  CAS  Google Scholar 

  24. 24

    24M. Bosetti, F. Boccafoschi, A. Calarco, M. Leigheb, S. Gatti, V. Piffanelli, G. Peluso, and M. Cannas, J. Biomater. Sci., Polym. Ed. 19, 1111 (2008).

    Article  CAS  Google Scholar 

  25. 25

    L. Liu, Z. Xiong, R. J. Zhang, L. Jin, and Y. N. Yan, J. Bioact. Compat. Polym. 24, 18 (2009).

    Article  Google Scholar 

  26. 26

    M. Manso Silván, G. M. L. Messina, I. Montero, C. Satriano, J. P. García Ruiz, and G. Marletta, J. Mater. Chem. 19, 5226 (2009).

    Article  Google Scholar 

  27. 27

    R. Müller et al., Biomaterials 26, 6962 (2005).

    Article  Google Scholar 

  28. 28

    M. C. Porté-Durrieu et al., Biomaterials 25, 4837 (2004).

    Article  Google Scholar 

  29. 29

    M. Manso Silván et al., J. Biomed. Mater. Res. Part B: Appl. Biomater. 83B, 232 (2007).

    Article  Google Scholar 

  30. 30

    D. P. Lennon, S. E. Haynesworth, S. P. Bruder, N. Jaiswal, and A. I. Caplan, In Vitro Cell. Dev. Biol.: Anim. 32, 602 (1996).

    Article  Google Scholar 

  31. 31

    J. C. Mollet, A. Rahaoui, and Y. Lemoine, J. Appl. Phys. 10, 59 (1998).

    CAS  Google Scholar 

  32. 32

    M. Arroyo-Hernández, M. Manso-Silvan, E. Lopez-Elvira, A. Muñoz, A. Climent, and J. M. Martínez Duart, Biosens. Bioelectron. 22, 2786 (2007).

    Article  Google Scholar 

  33. 33

    C. Perruchot, J. F. Watts, C. Lowe, R. G. White, and P. J. Cumpson, Surf. Interface Anal. 33, 869 (2002).

    Article  CAS  Google Scholar 

  34. 34

    T. Leïchlé et al., Nanotechnology 16, 525 (2005).

    Article  Google Scholar 

  35. 35

    35K. Haraguchi, H. J. Li, and L. Song, J. Colloid Interface Sci. 326, 41 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Manso Silvána.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sánchez-Vaquero, V., Satriano, C., Tejera-Sánchez, N. et al. Characterization and cytocompatibility of hybrid aminosilane-agarose hydrogel scaffolds. Biointerphases 5, 23–29 (2010). https://doi.org/10.1116/1.3388182

Download citation