Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Protein resistant oligo(ethylene glycol) terminated self-assembled monolayers of thiols on gold by vapor deposition in vacuum

Article metrics

  • 413 Accesses

  • 10 Citations

Abstract

Protein resistant oligo(ethylene glycol) (OEG) terminated self-assembled monolayers SAMs) of thiols on gold are commonly used for suppression of nonspecific protein adsorption in biology and biotechnology. The standard preparation for these SAMs is the solution method (SM) that involves immersion of the gold surface in an OEG solution. Here the authors present the preparation of 11-(mercaptoundecyl)-triethylene glycol [HS(CH2)11(OCH2CH2)3OH] SAMs on gold surface by vapor deposition (VD) in vacuum. They compare the properties of SAMs prepared by VD and SM using x-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection absorption spectroscopy, and surface plasmon resonance measurements. VD and SM SAMs exhibit similar packing density and show a similar resistance to the nonspecific adsorption of various proteins bovine serum albumin, trypsin, and myoglobin) under physiological conditions. A very high sensitivity of the OEG SAMs to x-ray radiation is found, which allows tuning their protein resistance. These results show a new path to in situ engineering, analysis, and patterning of protein resistant OEG SAMs by high vacuum and ultrahigh vacuum techniques.

References

  1. 1

    D. S. Wilson and S. Nock, Curr. Opin. Chem. Biol. 6, 81 (2002).

  2. 2

    P. P. Girard, E. A. Cavalcanti-Adam, R. Kemkemer, and J. P. Spatz, Soft Matter. 3, 307 (2007).

  3. 3

    J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. Washington, D.C.) 105, 1103 (2005).

  4. 4

    P. Kingshott and H. J. Griesser, Curr. Opin. Solid State Mater. Sci. 4, 403 (1999).

  5. 5

    C. Pale-Grosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991).

  6. 6

    K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).

  7. 7

    R. L. C. Wang, H. J. Kreuzer, and M. Grunze, J. Phys. Chem. B 101, 9767 (1997).

  8. 8

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

  9. 9

    R. Valiokas, S. Svedhem, S. C. T. Svensson, and B. Liedberg, Langmuir 15, 3390 (1999).

  10. 10

    M. Zolk, F. Eisert, J. Pipper, S. Herrwerth, W. Eck, M. Buck, and M. Grunze, Langmuir 16, 5849 (2000).

  11. 11

    R. Valiokas, S. Svedhem, M. Ostblom, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 105, 5459 (2001).

  12. 12

    S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

  13. 13

    L. Y. Li, S. F. Chen, J. Zheng, B. D. Ratner, and S. Y. Jiang, J. Phys. Chem. B 109, 2934 (2005).

  14. 14

    R. Valiokas, M. Ostblom, F. Bjorefors, B. Liedberg, J. Shi, and P. Konradsson, BioInterphases 1, 22 (2006).

  15. 15

    M. W. A. Skoda, R. M. J. Jacobs, J. Willis, and F. Schreiber, Langmuir 23, 970 (2007).

  16. 16

    R. Valiokas et al., J. Electron Spectrosc. Relat. Phenom. 172, 9 (2009).

  17. 17

    S. Schilp, A. Rosenhahn, M. E. Pettitt, J. Bowen, M. E. Callow, J. A. Callow, and M. Grunze, Langmuir 25, 10077 (2009).

  18. 18

    J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, Anal. Chem. 71, 777 (1999).

  19. 19

    Q. M. Yu, S. F. Chen, A. D. Taylor, J. Homola, B. Hock, and S. Y. Jiang, Sens. Actuators B 107, 193 (2005).

  20. 20

    A. Larsson, J. Angbrant, J. Ekeroth, P. Mansson, and B. Liedberg, Sens. Actuators B 113, 730 (2006).

  21. 21

    X. H. Lou and L. He, Sens. Actuators B 129, 225 (2008).

  22. 22

    M. Mrksich, Curr. Opin. Colloid Interface Sci. 2, 83 (1997).

  23. 23

    B. T. Houseman and M. Mrksich, Biomaterials 22, 943 (2001).

  24. 24

    S. Schilp, A. Kueller, A. Rosenhahn, M. Grunze, M. E. Pettitt, M. E. Callow, and J. A. Callow, BioInterphases 2, 143 (2007).

  25. 25

    A. Tinazli, J. L. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B. Liedberg, and R. Tampe, Chem.-Eur. J. 11, 5249 (2005).

  26. 26

    A. Biebricher, A. Paul, P. Tinnefeld, A. Gölzhäuser, and M. Sauer, J. Biotechnol. 112, 97 (2004).

  27. 27

    A. Turchanin, M. Schnietz, M. El-Desawy, H. H. Solak, C. David, and A. Gölzhäuser, Small 3, 2114 (2007).

  28. 28

    A. Turchanin, A. Tinazli, M. El-Desawy, H. Großmann, M. Schnietz, H. H. Solak, R. Tampé, and A. Gölzhäuser, Adv. Mater. (Weinheim, Ger.) 20, 471 (2008).

  29. 29

    P. Jonkheijm, D. Weinrich, H. Schroder, C. M. Niemeyer, and H. Waldmann, Angew. Chem., Int. Ed. 47, 9618 (2008).

  30. 30

    G. Witte and C. Wöll, J. Mater. Res. 19, 1889 (2004).

  31. 31

    M. J. Lercel, H. G. Craighead, A. N. Parikh, K. Seshadri, and D. L. Allara, Appl. Phys. Lett. 68, 1504 (1996).

  32. 32

    F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).

  33. 33

    L. Kankate, A. Turchanin, and A. Gölzhäuser, Langmuir 25, 10435 (2009).

  34. 34

    A. Eberhardt, P. Fenter, and P. Eisenberger, Surf. Sci. 397, L285 (1998).

  35. 35

    NIST X-ray Photoelectron Spectroscopy Database 20, Version 3.4, Web Version, 2003.

  36. 36

    D.Briggs and J. T.Grant, Surface Analyses by Auger and X-Ray Photoelectron Spectroscopy (SurfaceSpectra Limited, Chichester, 2003).

  37. 37

    P. E. Laibinis, C. D. Bain, and G. M. Whitesides, J. Phys. Chem. 95, 7017 (1991).

  38. 38

    M. Zharnikov and M. Grunze, J. Phys.: Condens. Matter 13, 11333 (2001).

  39. 39

    D. G. Castner, K. Hinds, and D. W. Grainger, Langmuir 12, 5083 (1996).

  40. 40

    M. J. Tarlov, D. R. F. Burgess, and G. Gillen, J. Am. Chem. Soc. 115, 5305 (1993).

  41. 41

    P. E. Laibinis, R. L. Graham, H. A. Biebuyck, and G. M. Whitesides, Science 254, 981 (1991).

  42. 42

    M. Zharnikov, W. Geyer, A. Gölzhauser, S. Frey, and M. Grunze, Phys. Chem. Chem. Phys. 1, 3163 (1999).

  43. 43

    K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson, and A. Ulman, Langmuir 17, 8 (2001).

  44. 44

    A. Turchanin, D. Käfer, M. El-Desawy, C. Wöll, G. Witte, and A. Gölzhäuser, Langmuir 25, 7342 (2009).

  45. 45

    M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).

  46. 46

    R. G. Nuzzo, L. H. Dubois, and D. L. Allara, J. Am. Chem. Soc. 112, 558 (1990).

  47. 47

    R. Valiokas, M. Ostblom, S. Svedhem, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 106, 10401 (2002).

  48. 48

    D. K. Schwartz, Annu. Rev. Phys. Chem. 52, 107 (2001).

  49. 49

    M. Buck, and M. Himmelhaus, J. Vac. Sci. Technol. A 19, 2717 (2001).

  50. 50

    M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, J. Phys. Chem. B 104, 576 (2000).

  51. 51

    M. Schnietz and A.Turchanin, Paul Scherrer Institute Scientific Report to SLS Proposal No. 20070440, 2007.

  52. 52

    N. Ballav, H. Thomas, T. Winkler, A. Terfort, and M. Zharnikov, Angew. Chem., Int. Ed. 48, 5833 (2009).

  53. 53

    V. Auzelyte et al., J. Micro/Nanolith. MEMS MOEMS 8, 021204 (2009).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article