Skip to main content

Journal for Biophysical Chemistry

Protein resistant oligo(ethylene glycol) terminated self-assembled monolayers of thiols on gold by vapor deposition in vacuum

Abstract

Protein resistant oligo(ethylene glycol) (OEG) terminated self-assembled monolayers SAMs) of thiols on gold are commonly used for suppression of nonspecific protein adsorption in biology and biotechnology. The standard preparation for these SAMs is the solution method (SM) that involves immersion of the gold surface in an OEG solution. Here the authors present the preparation of 11-(mercaptoundecyl)-triethylene glycol [HS(CH2)11(OCH2CH2)3OH] SAMs on gold surface by vapor deposition (VD) in vacuum. They compare the properties of SAMs prepared by VD and SM using x-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection absorption spectroscopy, and surface plasmon resonance measurements. VD and SM SAMs exhibit similar packing density and show a similar resistance to the nonspecific adsorption of various proteins bovine serum albumin, trypsin, and myoglobin) under physiological conditions. A very high sensitivity of the OEG SAMs to x-ray radiation is found, which allows tuning their protein resistance. These results show a new path to in situ engineering, analysis, and patterning of protein resistant OEG SAMs by high vacuum and ultrahigh vacuum techniques.

References

  1. 1

    D. S. Wilson and S. Nock, Curr. Opin. Chem. Biol. 6, 81 (2002).

    Article  CAS  Google Scholar 

  2. 2

    P. P. Girard, E. A. Cavalcanti-Adam, R. Kemkemer, and J. P. Spatz, Soft Matter. 3, 307 (2007).

    Article  CAS  Google Scholar 

  3. 3

    J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. Washington, D.C.) 105, 1103 (2005).

    CAS  Google Scholar 

  4. 4

    P. Kingshott and H. J. Griesser, Curr. Opin. Solid State Mater. Sci. 4, 403 (1999).

    Article  CAS  Google Scholar 

  5. 5

    C. Pale-Grosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991).

    Article  CAS  Google Scholar 

  6. 6

    K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).

    Article  CAS  Google Scholar 

  7. 7

    R. L. C. Wang, H. J. Kreuzer, and M. Grunze, J. Phys. Chem. B 101, 9767 (1997).

    Article  CAS  Google Scholar 

  8. 8

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    Article  CAS  Google Scholar 

  9. 9

    R. Valiokas, S. Svedhem, S. C. T. Svensson, and B. Liedberg, Langmuir 15, 3390 (1999).

    Article  CAS  Google Scholar 

  10. 10

    M. Zolk, F. Eisert, J. Pipper, S. Herrwerth, W. Eck, M. Buck, and M. Grunze, Langmuir 16, 5849 (2000).

    Article  CAS  Google Scholar 

  11. 11

    R. Valiokas, S. Svedhem, M. Ostblom, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 105, 5459 (2001).

    Article  CAS  Google Scholar 

  12. 12

    S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

    Article  CAS  Google Scholar 

  13. 13

    L. Y. Li, S. F. Chen, J. Zheng, B. D. Ratner, and S. Y. Jiang, J. Phys. Chem. B 109, 2934 (2005).

    Article  CAS  Google Scholar 

  14. 14

    R. Valiokas, M. Ostblom, F. Bjorefors, B. Liedberg, J. Shi, and P. Konradsson, BioInterphases 1, 22 (2006).

    Article  CAS  Google Scholar 

  15. 15

    M. W. A. Skoda, R. M. J. Jacobs, J. Willis, and F. Schreiber, Langmuir 23, 970 (2007).

    Article  CAS  Google Scholar 

  16. 16

    R. Valiokas et al., J. Electron Spectrosc. Relat. Phenom. 172, 9 (2009).

    Article  CAS  Google Scholar 

  17. 17

    S. Schilp, A. Rosenhahn, M. E. Pettitt, J. Bowen, M. E. Callow, J. A. Callow, and M. Grunze, Langmuir 25, 10077 (2009).

    Article  CAS  Google Scholar 

  18. 18

    J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, Anal. Chem. 71, 777 (1999).

    Article  CAS  Google Scholar 

  19. 19

    Q. M. Yu, S. F. Chen, A. D. Taylor, J. Homola, B. Hock, and S. Y. Jiang, Sens. Actuators B 107, 193 (2005).

    Article  Google Scholar 

  20. 20

    A. Larsson, J. Angbrant, J. Ekeroth, P. Mansson, and B. Liedberg, Sens. Actuators B 113, 730 (2006).

    Article  Google Scholar 

  21. 21

    X. H. Lou and L. He, Sens. Actuators B 129, 225 (2008).

    Article  Google Scholar 

  22. 22

    M. Mrksich, Curr. Opin. Colloid Interface Sci. 2, 83 (1997).

    Article  CAS  Google Scholar 

  23. 23

    B. T. Houseman and M. Mrksich, Biomaterials 22, 943 (2001).

    Article  CAS  Google Scholar 

  24. 24

    S. Schilp, A. Kueller, A. Rosenhahn, M. Grunze, M. E. Pettitt, M. E. Callow, and J. A. Callow, BioInterphases 2, 143 (2007).

    Article  CAS  Google Scholar 

  25. 25

    A. Tinazli, J. L. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B. Liedberg, and R. Tampe, Chem.-Eur. J. 11, 5249 (2005).

    Article  CAS  Google Scholar 

  26. 26

    A. Biebricher, A. Paul, P. Tinnefeld, A. Gölzhäuser, and M. Sauer, J. Biotechnol. 112, 97 (2004).

    Article  CAS  Google Scholar 

  27. 27

    A. Turchanin, M. Schnietz, M. El-Desawy, H. H. Solak, C. David, and A. Gölzhäuser, Small 3, 2114 (2007).

    Article  CAS  Google Scholar 

  28. 28

    A. Turchanin, A. Tinazli, M. El-Desawy, H. Großmann, M. Schnietz, H. H. Solak, R. Tampé, and A. Gölzhäuser, Adv. Mater. (Weinheim, Ger.) 20, 471 (2008).

    Article  CAS  Google Scholar 

  29. 29

    P. Jonkheijm, D. Weinrich, H. Schroder, C. M. Niemeyer, and H. Waldmann, Angew. Chem., Int. Ed. 47, 9618 (2008).

    Article  CAS  Google Scholar 

  30. 30

    G. Witte and C. Wöll, J. Mater. Res. 19, 1889 (2004).

    Article  CAS  Google Scholar 

  31. 31

    M. J. Lercel, H. G. Craighead, A. N. Parikh, K. Seshadri, and D. L. Allara, Appl. Phys. Lett. 68, 1504 (1996).

    Article  CAS  Google Scholar 

  32. 32

    F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).

    Article  CAS  Google Scholar 

  33. 33

    L. Kankate, A. Turchanin, and A. Gölzhäuser, Langmuir 25, 10435 (2009).

    Article  CAS  Google Scholar 

  34. 34

    A. Eberhardt, P. Fenter, and P. Eisenberger, Surf. Sci. 397, L285 (1998).

    Article  CAS  Google Scholar 

  35. 35

    NIST X-ray Photoelectron Spectroscopy Database 20, Version 3.4, Web Version, 2003.

  36. 36

    D.Briggs and J. T.Grant, Surface Analyses by Auger and X-Ray Photoelectron Spectroscopy (SurfaceSpectra Limited, Chichester, 2003).

  37. 37

    P. E. Laibinis, C. D. Bain, and G. M. Whitesides, J. Phys. Chem. 95, 7017 (1991).

    Article  CAS  Google Scholar 

  38. 38

    M. Zharnikov and M. Grunze, J. Phys.: Condens. Matter 13, 11333 (2001).

    Article  CAS  Google Scholar 

  39. 39

    D. G. Castner, K. Hinds, and D. W. Grainger, Langmuir 12, 5083 (1996).

    Article  CAS  Google Scholar 

  40. 40

    M. J. Tarlov, D. R. F. Burgess, and G. Gillen, J. Am. Chem. Soc. 115, 5305 (1993).

    Article  CAS  Google Scholar 

  41. 41

    P. E. Laibinis, R. L. Graham, H. A. Biebuyck, and G. M. Whitesides, Science 254, 981 (1991).

    Article  CAS  Google Scholar 

  42. 42

    M. Zharnikov, W. Geyer, A. Gölzhauser, S. Frey, and M. Grunze, Phys. Chem. Chem. Phys. 1, 3163 (1999).

    Article  CAS  Google Scholar 

  43. 43

    K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson, and A. Ulman, Langmuir 17, 8 (2001).

    Article  CAS  Google Scholar 

  44. 44

    A. Turchanin, D. Käfer, M. El-Desawy, C. Wöll, G. Witte, and A. Gölzhäuser, Langmuir 25, 7342 (2009).

    Article  CAS  Google Scholar 

  45. 45

    M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).

    Article  CAS  Google Scholar 

  46. 46

    R. G. Nuzzo, L. H. Dubois, and D. L. Allara, J. Am. Chem. Soc. 112, 558 (1990).

    Article  CAS  Google Scholar 

  47. 47

    R. Valiokas, M. Ostblom, S. Svedhem, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 106, 10401 (2002).

    Article  CAS  Google Scholar 

  48. 48

    D. K. Schwartz, Annu. Rev. Phys. Chem. 52, 107 (2001).

    Article  CAS  Google Scholar 

  49. 49

    M. Buck, and M. Himmelhaus, J. Vac. Sci. Technol. A 19, 2717 (2001).

    Article  CAS  Google Scholar 

  50. 50

    M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, J. Phys. Chem. B 104, 576 (2000).

    Article  CAS  Google Scholar 

  51. 51

    M. Schnietz and A.Turchanin, Paul Scherrer Institute Scientific Report to SLS Proposal No. 20070440, 2007.

  52. 52

    N. Ballav, H. Thomas, T. Winkler, A. Terfort, and M. Zharnikov, Angew. Chem., Int. Ed. 48, 5833 (2009).

    Article  CAS  Google Scholar 

  53. 53

    V. Auzelyte et al., J. Micro/Nanolith. MEMS MOEMS 8, 021204 (2009).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kankate, L., Werner, U., Turchanin, A. et al. Protein resistant oligo(ethylene glycol) terminated self-assembled monolayers of thiols on gold by vapor deposition in vacuum. Biointerphases 5, 30–36 (2010). https://doi.org/10.1116/1.3407483

Download citation