Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Two stages in three-dimensional in vitro growth of tissue generated by osteoblastlike cells

Article metrics

  • 710 Accesses

  • 27 Citations

Abstract

Bone regeneration is controlled by a variety of biochemical, biomechanical, cellular, and hormonal mechanisms. In particular, physical properties of the substrate such as stiffness and architecture highly influence the proliferation and differentiation of cells. The aim of this work is to understand the influence of scaffold stiffness and cell seeding densities on the formation of tissue by osteoblast cells within polyether urethane scaffolds containing pores of different sizes. MC3T3-E1 preosteoblast cells were seeded on the scaffold, and the amount of tissue formed within the pores was analyzed for culture times up to 49 days by phase contrast microscopy. The authors show that the kinetics of three-dimensional tissue growth in these scaffolds follows two stages and can be described by a universal growth law. The first stage is dominated by cell-material interactions with cell adherence and differentiation being strongly dependent on the polymer material. After a delay time of a few weeks, cells begin to grow within their own matrix, the delay being strongly dependent on substrate stiffness and seeding protocols. In this later stage of growth, three-dimensional tissue amplification is controlled rather by the pore geometry than the scaffold material properties. This emphasizes how geometric constraints may guide tissue formation in vitro and shows that optimizing scaffold architectures may improve tissue formation independent of the scaffold material used.

References

  1. 1

    D. W. Hutmacher, J. Biomater. Sci., Polym. Ed. 12, 107 (2001).

  2. 2

    R. Langer, L. G. Cima, J. A. Tamada, and E. Wintermantel, Biomaterials 11, 738 (1990).

  3. 3

    A. S. P. Lin, T. H. Barrows, S. H. Cartmell, and R. E. Guldberg, Biomaterials 24, 481 (2003).

  4. 4

    T. M. G. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran, Biomaterials 23, 1283 (2002).

  5. 5

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

  6. 6

    N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, Biomaterials 25, 2721 (2004).

  7. 7

    A. S. G. Curtis and C. D. Wilkinson, J. Biomater. Sci., Polym. Ed. 9, 1313 (1998).

  8. 8

    J. Park, S. Bauer, K. A. Schlegel, F. W. Neukam, K. von der Mark, P. Schmuki, Small 5, 666 (2009).

  9. 9

    O. Zinger, G. Zhao, Z. Schwartz, J. Simpson, M. Wieland, D. Landolt, and B. Boyan, Biomaterials 26, 1837 (2005).

  10. 10

    B. D. Boyan, V. L. Sylvia, Y. H. Liu, R. Sagun, D. L. Cochran, C. H. Lohmann, D. D. Dean, and Z. Schwartz, Biomaterials 20, 2305 (1999).

  11. 11

    P. Linez-Bataillon, F. Monchau, M. Bigerelle, and H. F. Hildebrand, Biomol. Eng. 19, 133 (2002).

  12. 12

    D. E. Discher, P. Janmey, and Y. L. Wang, Science 310, 1139 (2005).

  13. 13

    H. J. Kong, T. R. Polte, E. Alsberg, and D. J. Mooney, Proc. Natl. Acad. Sci. U.S.A. 102, 4300 (2005).

  14. 14

    C. M. Lo, H. B. Wang, M. Dembo, and Yu-li Wang, Biophys. J. 79, 144 (2000).

  15. 15

    A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell 126, 677 (2006).

  16. 16

    K. Anselme, M. Bigerelle, B. Noel, E. Deufresne, D. Judas, A. Iost, and P. Hardouin, J. Biomed. Mater. Res. 49, 155 (2000).

  17. 17

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

  18. 18

    S. V. Graeter, J. H. Huang, N. Perschmann, M. López-García, H. Kessler, J. Ding, and J. P. Spatz, Nano Lett. 7, 1413 (2007).

  19. 19

    J. Park, S. Bauer, K. von der Mark, and P. Schmuki, Nano Lett. 7, 1686 (2007).

  20. 20

    J. P. Spatz and B. Geiger, in Cell Mechanics-Methods in Cell Biology, edited by Y. L. Wang and D. E. Discher (Elsevier, New York, 2007), Vol. 83, pp. 89.

  21. 21

    F. J. O’Brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, Biomaterials 26, 433 (2005).

  22. 22

    E. Charriére, J. Lemaitre, and Ph. Zysset, Biomaterials 24, 809 (2003).

  23. 23

    J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Müeller, and L. G. Griffith, Tissue Eng. 7, 557 (2001).

  24. 24

    M. Rumpler, A. Woesz, J. W. C. Dunlop, J. T. van Dongen, P. Fratzl, J. R. Soc., Interface 5, 1173 (2008).

  25. 25

    J. E. Davies, Anat. Rec. 245, 426 (1996).

  26. 26

    T. A. Owen, M. Aronow, V. Shalhoub, L. M. Barone, L. Wilming, M. S. Tassinari, M. B. Kennedy, S. Pockwinse, J. B. Lian, and G. S. Stein, J. Cell. Physiol. 143, 420 (1990).

  27. 27

    V. Thomas, T. V. Kumari, and M. Jayabalan, Biomacromolecules 2, 588 (2001).

  28. 28

    K. P. Kommareddy, C. Lange, M. Rumpler, M. Inderchand, J. Cui, K. Kratz, J. H. Börgermann, A. Lendlein, P. Knaus, and P. Fratzl, Bone 44, S261 (2009).

  29. 29

    N. M. K. Lamba, K. A. Woodhouse, and S. L. Cooper, Polyurethanes in Biomedical Applications (CRC, Boca Raton, FL, 1998), 277 pp.

  30. 30

    H. John Crabtree, ASAIO J. 49, 290 (2003).

  31. 31

    J. Cui, K. Kratz, and A. Lendlein, Mater. Res. Soc. Symp. Proc. 1190, 93 (2009).

  32. 32

    R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, and A. Lendlein, Proc. Natl. Acad. Sci. U.S.A. 103, 3540 (2006).

  33. 33

    J. Cui, K. Kratz, and A. Lendlein, Smart Mater. Struct. 19, 065019 (2010).

  34. 34

    J. Cui, K. Kratz, M. Heuchel, B. Hiebl, and A. Lendlein, Polym. Adv. Technol. (in press).

  35. 35

    L. D. Quarles, D. A. Yohay, L. W. Lever, R. Caton, R. J. Wenstrup, J. Bone Miner. Res. 7, 683 (1992).

  36. 36

    J. Y. Choi, B. H. Lee, K. B. Song, R.-W. Park, I.-S. Kim, K.-Y. Sohn, J.-S. Jo, and H.-M. Ryoo, J. Cell. Biochem. 61, 609 (1996).

  37. 37

    M. Rumpler, A. Woesz, F. Varga, I. Majubala, K. Klaushofer, and P. Fratzl, J. Biomed. Mater. Res. Part A 81A, 40 (2007).

  38. 38

    N. Fratzl-Zelman, H. Hörandner, E. Luegmayr, F. Varga, A. Ellinger, M. P. M. Erlee, and K. Klaushofer, Bone 20, 225 (1997).

  39. 39

    K. H. Frosch, F. Barvencik, C. H. Lohmann, V. Viereck, H. Siggelkow, J. Breme, K. Dresing, and K. M. Stürmer, Cells Tissues Organs 170, 214 (2002).

  40. 40

    V. G. Brunton, I. R. J. MacPherson, and M. C. Frame, Biochim. Biophys. Acta 1692, 121 (2004).

  41. 41

    A. Okumura, M. Goto, T. Goto, M. Yoshinari, S. Masuko, T. Katsuki, and T. Tanaka, Biomaterials 22, 2263 (2001).

  42. 42

    M. A. Woodruff, P. Jones, D. Farrar, D. M.Grant, and C. A. Scotchford, J. Mol. Histol. 38, 491 (2007).

  43. 43

    G. Cheng, B. B. Youssef, P. Markenscoff, and K. Zygourakis, Biophys. J. 90, 713 (2006).

  44. 44

    44B. Geiger, Science 294, 1661 (2001).

Download references

Author information

Correspondence to Peter Fratzl.

Rights and permissions

Reprints and Permissions

About this article