Skip to main content

Journal for Biophysical Chemistry

Two stages in three-dimensional in vitro growth of tissue generated by osteoblastlike cells

Abstract

Bone regeneration is controlled by a variety of biochemical, biomechanical, cellular, and hormonal mechanisms. In particular, physical properties of the substrate such as stiffness and architecture highly influence the proliferation and differentiation of cells. The aim of this work is to understand the influence of scaffold stiffness and cell seeding densities on the formation of tissue by osteoblast cells within polyether urethane scaffolds containing pores of different sizes. MC3T3-E1 preosteoblast cells were seeded on the scaffold, and the amount of tissue formed within the pores was analyzed for culture times up to 49 days by phase contrast microscopy. The authors show that the kinetics of three-dimensional tissue growth in these scaffolds follows two stages and can be described by a universal growth law. The first stage is dominated by cell-material interactions with cell adherence and differentiation being strongly dependent on the polymer material. After a delay time of a few weeks, cells begin to grow within their own matrix, the delay being strongly dependent on substrate stiffness and seeding protocols. In this later stage of growth, three-dimensional tissue amplification is controlled rather by the pore geometry than the scaffold material properties. This emphasizes how geometric constraints may guide tissue formation in vitro and shows that optimizing scaffold architectures may improve tissue formation independent of the scaffold material used.

References

  1. 1

    D. W. Hutmacher, J. Biomater. Sci., Polym. Ed. 12, 107 (2001).

    Article  CAS  Google Scholar 

  2. 2

    R. Langer, L. G. Cima, J. A. Tamada, and E. Wintermantel, Biomaterials 11, 738 (1990).

    Article  CAS  Google Scholar 

  3. 3

    A. S. P. Lin, T. H. Barrows, S. H. Cartmell, and R. E. Guldberg, Biomaterials 24, 481 (2003).

    Article  CAS  Google Scholar 

  4. 4

    T. M. G. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran, Biomaterials 23, 1283 (2002).

    Article  CAS  Google Scholar 

  5. 5

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    Article  CAS  Google Scholar 

  6. 6

    N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, Biomaterials 25, 2721 (2004).

    Article  CAS  Google Scholar 

  7. 7

    A. S. G. Curtis and C. D. Wilkinson, J. Biomater. Sci., Polym. Ed. 9, 1313 (1998).

    Article  CAS  Google Scholar 

  8. 8

    J. Park, S. Bauer, K. A. Schlegel, F. W. Neukam, K. von der Mark, P. Schmuki, Small 5, 666 (2009).

    Article  CAS  Google Scholar 

  9. 9

    O. Zinger, G. Zhao, Z. Schwartz, J. Simpson, M. Wieland, D. Landolt, and B. Boyan, Biomaterials 26, 1837 (2005).

    Article  CAS  Google Scholar 

  10. 10

    B. D. Boyan, V. L. Sylvia, Y. H. Liu, R. Sagun, D. L. Cochran, C. H. Lohmann, D. D. Dean, and Z. Schwartz, Biomaterials 20, 2305 (1999).

    Article  CAS  Google Scholar 

  11. 11

    P. Linez-Bataillon, F. Monchau, M. Bigerelle, and H. F. Hildebrand, Biomol. Eng. 19, 133 (2002).

    Article  CAS  Google Scholar 

  12. 12

    D. E. Discher, P. Janmey, and Y. L. Wang, Science 310, 1139 (2005).

    Article  CAS  Google Scholar 

  13. 13

    H. J. Kong, T. R. Polte, E. Alsberg, and D. J. Mooney, Proc. Natl. Acad. Sci. U.S.A. 102, 4300 (2005).

    Article  CAS  Google Scholar 

  14. 14

    C. M. Lo, H. B. Wang, M. Dembo, and Yu-li Wang, Biophys. J. 79, 144 (2000).

    Article  CAS  Google Scholar 

  15. 15

    A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell 126, 677 (2006).

    Article  CAS  Google Scholar 

  16. 16

    K. Anselme, M. Bigerelle, B. Noel, E. Deufresne, D. Judas, A. Iost, and P. Hardouin, J. Biomed. Mater. Res. 49, 155 (2000).

    Article  CAS  Google Scholar 

  17. 17

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

    Article  CAS  Google Scholar 

  18. 18

    S. V. Graeter, J. H. Huang, N. Perschmann, M. López-García, H. Kessler, J. Ding, and J. P. Spatz, Nano Lett. 7, 1413 (2007).

    Article  CAS  Google Scholar 

  19. 19

    J. Park, S. Bauer, K. von der Mark, and P. Schmuki, Nano Lett. 7, 1686 (2007).

    Article  CAS  Google Scholar 

  20. 20

    J. P. Spatz and B. Geiger, in Cell Mechanics-Methods in Cell Biology, edited by Y. L. Wang and D. E. Discher (Elsevier, New York, 2007), Vol. 83, pp. 89.

    Google Scholar 

  21. 21

    F. J. O’Brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, Biomaterials 26, 433 (2005).

    Article  Google Scholar 

  22. 22

    E. Charriére, J. Lemaitre, and Ph. Zysset, Biomaterials 24, 809 (2003).

    Article  Google Scholar 

  23. 23

    J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Müeller, and L. G. Griffith, Tissue Eng. 7, 557 (2001).

    Article  CAS  Google Scholar 

  24. 24

    M. Rumpler, A. Woesz, J. W. C. Dunlop, J. T. van Dongen, P. Fratzl, J. R. Soc., Interface 5, 1173 (2008).

    Article  Google Scholar 

  25. 25

    J. E. Davies, Anat. Rec. 245, 426 (1996).

    Article  CAS  Google Scholar 

  26. 26

    T. A. Owen, M. Aronow, V. Shalhoub, L. M. Barone, L. Wilming, M. S. Tassinari, M. B. Kennedy, S. Pockwinse, J. B. Lian, and G. S. Stein, J. Cell. Physiol. 143, 420 (1990).

    Article  CAS  Google Scholar 

  27. 27

    V. Thomas, T. V. Kumari, and M. Jayabalan, Biomacromolecules 2, 588 (2001).

    Article  CAS  Google Scholar 

  28. 28

    K. P. Kommareddy, C. Lange, M. Rumpler, M. Inderchand, J. Cui, K. Kratz, J. H. Börgermann, A. Lendlein, P. Knaus, and P. Fratzl, Bone 44, S261 (2009).

    Article  Google Scholar 

  29. 29

    N. M. K. Lamba, K. A. Woodhouse, and S. L. Cooper, Polyurethanes in Biomedical Applications (CRC, Boca Raton, FL, 1998), 277 pp.

    Google Scholar 

  30. 30

    H. John Crabtree, ASAIO J. 49, 290 (2003).

    Article  Google Scholar 

  31. 31

    J. Cui, K. Kratz, and A. Lendlein, Mater. Res. Soc. Symp. Proc. 1190, 93 (2009).

    Article  Google Scholar 

  32. 32

    R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, and A. Lendlein, Proc. Natl. Acad. Sci. U.S.A. 103, 3540 (2006).

    Article  CAS  Google Scholar 

  33. 33

    J. Cui, K. Kratz, and A. Lendlein, Smart Mater. Struct. 19, 065019 (2010).

  34. 34

    J. Cui, K. Kratz, M. Heuchel, B. Hiebl, and A. Lendlein, Polym. Adv. Technol. (in press).

  35. 35

    L. D. Quarles, D. A. Yohay, L. W. Lever, R. Caton, R. J. Wenstrup, J. Bone Miner. Res. 7, 683 (1992).

    Article  CAS  Google Scholar 

  36. 36

    J. Y. Choi, B. H. Lee, K. B. Song, R.-W. Park, I.-S. Kim, K.-Y. Sohn, J.-S. Jo, and H.-M. Ryoo, J. Cell. Biochem. 61, 609 (1996).

    Article  CAS  Google Scholar 

  37. 37

    M. Rumpler, A. Woesz, F. Varga, I. Majubala, K. Klaushofer, and P. Fratzl, J. Biomed. Mater. Res. Part A 81A, 40 (2007).

    Article  CAS  Google Scholar 

  38. 38

    N. Fratzl-Zelman, H. Hörandner, E. Luegmayr, F. Varga, A. Ellinger, M. P. M. Erlee, and K. Klaushofer, Bone 20, 225 (1997).

    Article  CAS  Google Scholar 

  39. 39

    K. H. Frosch, F. Barvencik, C. H. Lohmann, V. Viereck, H. Siggelkow, J. Breme, K. Dresing, and K. M. Stürmer, Cells Tissues Organs 170, 214 (2002).

    Article  CAS  Google Scholar 

  40. 40

    V. G. Brunton, I. R. J. MacPherson, and M. C. Frame, Biochim. Biophys. Acta 1692, 121 (2004).

    Article  CAS  Google Scholar 

  41. 41

    A. Okumura, M. Goto, T. Goto, M. Yoshinari, S. Masuko, T. Katsuki, and T. Tanaka, Biomaterials 22, 2263 (2001).

    Article  CAS  Google Scholar 

  42. 42

    M. A. Woodruff, P. Jones, D. Farrar, D. M.Grant, and C. A. Scotchford, J. Mol. Histol. 38, 491 (2007).

    Article  CAS  Google Scholar 

  43. 43

    G. Cheng, B. B. Youssef, P. Markenscoff, and K. Zygourakis, Biophys. J. 90, 713 (2006).

    Article  CAS  Google Scholar 

  44. 44

    44B. Geiger, Science 294, 1661 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Fratzl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kommareddy, K.P., Lange, C., Rumpler, M. et al. Two stages in three-dimensional in vitro growth of tissue generated by osteoblastlike cells. Biointerphases 5, 45–52 (2010). https://doi.org/10.1116/1.3431524

Download citation