Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Continuum model of mechanical interactions between biological cells and artificial nanostructures

Article metrics

  • 426 Accesses

  • 10 Citations

Abstract

The controlled insertion of artificial nanostructures into biological cells has been utilized for patch clamping, targeted drug delivery, cell lysing, and cell mechanics measurements. In this work, an elastic continuum model is implemented to treat the deformation of spherical cells in solution due to their interaction with cylindrical probes. At small deformations, the force varies nonlinearly with indentation due to global deformation of the cell shape. However, at large indentations, the force varies linearly with indentation due to more localized deformations. These trends are consistent with experimental measurements under comparable conditions and can be used to develop design rules for optimizing probe-cell interactions.

References

  1. 1

    N. Hilal, W. Bowen, L. Alkhatib, and O. Ogunbiyi, Chem. Eng. Res. Des. 84, 282 (2006).

  2. 2

    F. Gaboriaud and Y. F. Dufrene, Colloids Surf., B 54, 10 (2007).

  3. 3

    Y. F. Dufrêne, Nat. Rev. Microbiol. 6, 674 (2008).

  4. 4

    P. Sun, F. O. Laforge, T. P. Abeyweera, S. A. Rotenberg, J. Carpino, and M. V. Mirkin, Proc. Natl. Acad. Sci. U.S.A. 105, 443 (2008).

  5. 5

    I. Kleps, M. Miu, F. Craciunoiu, and M. Simion, Proceedings of the 32nd International Conference on Micro- and Nano-Engineering [Microelectron. Eng.] 84, 1744 (2007)].

  6. 6

    W. Kim, J. K. Ng, M. E. Kunitake, B. R. Conklin, and P. Yang, J. Am. Chem. Soc. 129, 7228 (2007).

  7. 7

    Y. Qiao, J. Chen, X. Guo, D. Cantrell, R. Ruoff, and J. Troy, Nanotechnology 16, 1598 (2005).

  8. 8

    X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, Proc. Natl. Acad. Sci. U.S.A. 104, 8218 (2007).

  9. 9

    A. K. Shalek et al., Proc. Natl. Acad. Sci. U.S.A. 107, 1870 (2010).

  10. 10

    S. D. Conner and S. L. Schmid, Nature (London) 422, 37 (2003).

  11. 11

    M. E. Davis, Z. G. Chen, and D. M. Shin, Nat. Rev. Drug Discovery 7, 771 (2008).

  12. 12

    W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, Nat. Nanotechnol. 3, 145 (2008).

  13. 13

    B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, Nano Lett. 6, 662 (2006).

  14. 14

    J. A. Champion and S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 103, 4930 (2006).

  15. 15

    S. Mitragotri and J. Lahann, Nature Mater. 8, 15 (2009).

  16. 16

    R. G. Thakar, M. G. Chown, A. Patel, L. Peng, S. Kumar, and T. A. Desai, Small 4, 1416 (2008).

  17. 17

    M. M. Stevens and J. H. George, Science 310, 1135 (2005).

  18. 18

    T. Brown, J. Biomech. 33, 3 (2000).

  19. 19

    G. W. Schmidschonbein, K. L. Sung, H. Tozeren, R. Skalak, and S. Chien, Biophys. J. 36, 243 (1981).

  20. 20

    D. P. Theret, M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler, J. Biomech. Eng. 110, 190 (1998).

  21. 21

    E. Evans and A. Yeung, Biophys. J. 56, 151 (1989).

  22. 22

    D. Needham and R. M. Hochmuth, J. Biomech. Eng. 112, 269 (1990).

  23. 23

    C. Dong, R. Skalak, and K. L. Sung, Biorheology 28, 557 (1991).

  24. 24

    B. D. Hoffman and J. C. Crocker, Annu. Rev. Biomed. Eng. 11, 259 (2009).

  25. 25

    B. D. Almquist and N. A. Melosh, Proc. Natl. Acad. Sci. U.S.A. 107, 5815 (2010).

  26. 26

    S. Sen, S. Subramanian, and D. E. Discher, Biophys. J. 89, 3203 (2005).

  27. 27

    V. Gordon, C. Xi, J. Hutchinson, A. Bausch, M. Marquez, and D. Weitz, J. Am. Chem. Soc. 126, 14117 (2004).

  28. 28

    B. Daily, E. L. Elson, and G. I. Zahalak, Biophys. J. 45, 671 (1984).

  29. 29

    E. A. Evans and R. Skalak, CRC Crit. Rev. Bioeng. 3, 181 (1979).

  30. 30

    R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1962).

  31. 31

    D. H. Boal, Mechanics of the Cell (Cambridge University Press, Cambridge, UK, 2002).

  32. 32

    E. A. Evans, Biophys. J. 30, 265 (1980).

  33. 33

    E. Evans and W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).

  34. 34

    B. M. Discher, Y. Y. Won, D. S. Ege, J. C. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, Science 284, 1143 (1999).

  35. 35

    Y. Zhou and R. M. Raphael, Biophys. J. 89, 1789 (2005).

  36. 36

    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, Engineering Societies Monographs, 2nd ed. (McGraw-Hill, New York, 1959).

  37. 37

    A. Hategan, R. Law, S. Kahn, and D. E. Discher, Biophys. J. 85, 2746 (2003).

  38. 38

    E. A. Evans and R. Skalak, Mechanics and Thermodynamics of Biomembranes (CRC, Boca Raton, FL, 1980).

  39. 39

    D. Di Carlo, K.-H. Jeong, and L. P. Lee, Lab Chip 3, 287 (2003).

  40. 40

    E. A. Evans, R. Waugh, and L. Melnik, Biophys. J. 16, 585 (1976).

  41. 41

    M. G. Schrlau, N. J. Dun, and H. H. Bau, ACS Nano 3, 563 (2009).

  42. 42

    I. U. Vakarelski, S. C. Brown, K. Higashitani, and B. M. Moudgil, Langmuir 23, 10893 (2007).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article