Skip to main content

Journal for Biophysical Chemistry

Nanotribological characterization of human head hair by friction force microscopy in dry atmosphere and aqueous environment

Abstract

Friction force microscopy was employed for the tribological investigation of human head hair in two different environments: a dry atmosphere and de-ionized water. The fibers were immobilized by embedding them in indium. The effects of bleaching, conditioning, and immersion in methanolic KOH were quantified in terms of the relative coefficient of friction (μ). The virgin fibers were clearly distinguished in terms of friction coefficient from the chemically damaged ones in both environments, while all categories of hair exhibited higher friction coefficients in the aqueous environment. Secondary ion mass spectroscopy was used as a complementary technique to examine the presence of fatty acids on the cuticular surface of the different categories of hair as well as the conditioner distribution. Neither bleaching nor 30 min treatment in methanolic KOH was found adequate to completely remove the fatty acids from the fibers’ surface. Conditioner species were detected along the whole cuticular surface.

References

  1. 1

    G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  Google Scholar 

  2. 2

    B. Bhushan, Wear 259, 1507 (2005).

    CAS  Article  Google Scholar 

  3. 3

    R. W. Carpick and M. Salmeron, Chem. Rev. 97, 1163 (1997).

    CAS  Article  Google Scholar 

  4. 4

    E. Gnecco, R. Bennewitz, T. Gyalog, and E. Meyer, J. Phys.: Condens. Matter 13, 202 (2001).

    Article  Google Scholar 

  5. 5

    G. J. Leggett, N. J. Brewer, and K. S. L. Chong, Phys. Chem. Chem. Phys. 7, 1107 (2005).

    CAS  Article  Google Scholar 

  6. 6

    C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59, 1942 (1987).

    CAS  Article  Google Scholar 

  7. 7

    C. F. Quate, Surf. Sci. 299–300, 980 (1994).

    Article  Google Scholar 

  8. 8

    E. D. Goddard and R. L. Shmitt, Cosmet. Toiletries 109, 55 (1994).

    CAS  Google Scholar 

  9. 9

    9S. D. O’Connor, K. L. Komisarek, and J. D. Baldeschwieler, J. Invest. Dermatol. 105, 96 (1995).

    Article  Google Scholar 

  10. 10

    J. R. Smith, J. Soc. Cosmet. Chem. 48, 199 (1997).

    Google Scholar 

  11. 11

    H. You and L. Yu, Scanning 19, 431 (1997).

    CAS  Article  Google Scholar 

  12. 12

    R. L. McMullen, J. Jackowicz, and S. P. Kelty, IFSCC Mag. 3, 39 (2000).

    Google Scholar 

  13. 13

    R. L. McMullen and S. P. Kelty, Scanning 23, 337 (2001).

    CAS  Article  Google Scholar 

  14. 14

    B. Bhushan, Prog. Mater. Sci. 53, 585 (2008).

    CAS  Article  Google Scholar 

  15. 15

    J. R. Smith and J. A. Swift, J. Macrosc. 206, 182 (2002).

    CAS  Article  Google Scholar 

  16. 16

    S. Breakspear, J. R. Smith, and G. Luengo, J. Struct. Biol. 149, 235 (2005).

    CAS  Article  Google Scholar 

  17. 17

    M. Sadaie, N. Nishikawa, S. Ohnishi, K. Tamadab, K. Yase, and M. Hara, Colloids Surf., B 51, 120 (2006).

    CAS  Article  Google Scholar 

  18. 18

    C. LaTorre and B. Bhushan, Ultramicroscopy 105, 155 (2005).

    CAS  Article  Google Scholar 

  19. 19

    B. Bhushan, G. Wei, and P. Haddad, Wear 259, 1012 (2005).

    CAS  Article  Google Scholar 

  20. 20

    C. LaTorre and B. Bhushan, J. Vac. Sci. Technol. A 23, 1034 (2005).

    CAS  Article  Google Scholar 

  21. 21

    C. LaTorre, B. Bhushan, J. Z. Yang, and P. M. Torgerson, J. Cosmet. Sci. 57, 37 (2006).

    CAS  Google Scholar 

  22. 22

    C. LaTorre and B. Bhushan, Ultramicroscopy 106, 720 (2006).

    CAS  Article  Google Scholar 

  23. 23

    C. Zviak and J. Millequant, in The Science of Hair Care, edited by C. Bouillon and J. Wilkinson (CRC Press, Boca Raton, 2005), p. 229–312.

    Google Scholar 

  24. 24

    A. P. Negri, H. J. Cornell, and D. E. Rivett, Text. Res. J. 63, 109 (1993).

    CAS  Article  Google Scholar 

  25. 25

    J. Schwieters, H. G. Cramer, T. Heller, U. Jürgens, E. Niehuis, J. Zehnphenning, and A. Benninghoven, J. Vac. Sci. Technol. A 9, 2864 (1991).

    CAS  Article  Google Scholar 

  26. 26

    J. A. Swift and J. R. Smith, Scanning 22, 310 (2000).

    CAS  Article  Google Scholar 

  27. 27

    G. Gillen, S. N. C. Roberson, and M. Stranick, Scanning 21, 173 (1999).

    CAS  Article  Google Scholar 

  28. 28

    S. Grafstrom, M. Neitzert, T. Hagen, J. Ackerman, R. Neumann, O. Probst, and M. Wortge, Nanotechnology 4, 143 (1993).

    Article  Google Scholar 

  29. 29

    R. Overney and E. Meyer, MRS Bull. 18, 26 (1993).

    CAS  Google Scholar 

  30. 30

    J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

    CAS  Article  Google Scholar 

  31. 31

    J. C. Vickerman, D. Briggs, and A. Henderson, SurfaceSpectra Ltd, 2006.

  32. 32

    V. Dupres, D. Langevin, P. Guenoun, A. Checco, G. Luengo, and F. Leroy, J. Colloid Interface Sci. 306, 34 (2007).

    CAS  Article  Google Scholar 

  33. 33

    L. N. Jones and D. E. Rivett, Microm. 28, 469 (1997).

    CAS  Article  Google Scholar 

  34. 34

    N. Chen and B. Bhushan, J. Microsc. 221, 203 (2006).

    CAS  Article  Google Scholar 

  35. 35

    J. A. Swift and J. R. Smith, J. Macrosc. 204, 203 (2001).

    CAS  Article  Google Scholar 

  36. 36

    S. Breakspear and J. R. Smith, J. Microsc. 215, 34 (2004).

    CAS  Article  Google Scholar 

  37. 37

    J. A. A. Crossley et al., Micron 31, 659 (2000).

    Article  Google Scholar 

  38. 38

    J. Blach, W. Loughlin, G. Watson, and S. Myhra, Int. J. Cosmet. Sci. 23, 165 (2001).

    CAS  Article  Google Scholar 

  39. 39

    A. P. Negri, D. A. Rankin, W. G. Nelson, and D. E. Rivett, Text. Res. J. 66, 491 (1996).

    CAS  Article  Google Scholar 

  40. 40

    J. M. Maxwell and M. G. Huson, Micron 36, 127 (2005).

    CAS  Article  Google Scholar 

  41. 41

    L. Pille, J. S. Church, and R. G. Gilbert, J. Colloid Interface Sci. 198, 368 (1998).

    CAS  Article  Google Scholar 

  42. 42

    G. Wei, B. Bhushan, and P. M. Torgerson, Ultramicroscopy 105, 248 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Y. K. Kamath, C. J. Danziger, and H. Weigmann, J. Appl. Polym. Sci. 22, 2295 (1978).

    CAS  Article  Google Scholar 

  44. 44

    P. K. Whitman and D. L. Feke, J. Am. Ceram. Soc. 71, 1086 (1998).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Graham J. Leggett.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nikogeorgos, N., Fletcher, I.W., Boardman, C. et al. Nanotribological characterization of human head hair by friction force microscopy in dry atmosphere and aqueous environment. Biointerphases 5, 60–68 (2010). https://doi.org/10.1116/1.3432462

Download citation