Skip to main content

Journal for Biophysical Chemistry

UV laser-ablated surface textures as potential regulator of cellular response

Abstract

Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ≈4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.

References

  1. 1

    B. G. Keselowsky, D. M. Collard, and A. J. Garcia, Biomaterials 25, 5947 (2004).

    Article  CAS  Google Scholar 

  2. 2

    F. X. Jiang, B. Yurke, B. L. Firestein, and N. A. Langrana, Ann. Biomed. Eng. 36, 1565 (2008).

    Article  Google Scholar 

  3. 3

    J. Tan and W. M. Saltzman, Biomaterials 25, 3593 (2004).

    Article  CAS  Google Scholar 

  4. 4

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

    Article  CAS  Google Scholar 

  5. 5

    Z. W. Kowalski, Vacuum 63, 603 (2001).

    Article  CAS  Google Scholar 

  6. 6

    A. F. von Recum, J. Biomed. Mater. Res. 18, 323 (1984).

    Article  Google Scholar 

  7. 7

    R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. C. Wang, G. M. Whitesides, and D. E. Ingber, Science 264, 696 (1994).

    Article  CAS  Google Scholar 

  8. 8

    S. N. Bhatia, M. L. Yarmush, and M. Toner, J. Biomed. Mater. Res. 34, 189 (1997).

    Article  CAS  Google Scholar 

  9. 9

    Y. Ito, Biomaterials 20, 2333 (1999).

    Article  CAS  Google Scholar 

  10. 10

    C. D. McFarland, C. H. Thomas, C. DeFilippis, J. G. Steele, and K. E. Healy, J. Biomed. Mater. Res. 49, 200 (2000).

    Article  CAS  Google Scholar 

  11. 11

    C. D. W. Wilkinson, M. Riehle, M. Wood, J. Gallagher, and A. S. G. Curtis, Mater. Sci. Eng., C 19, 263 (2002).

    Article  Google Scholar 

  12. 12

    P. Li, U. Bakowsky, F. Yu, C. Loehbach, F. Muecklich, and C. M. Lehr, IEEE Trans. Nanobiosci. 2, 138 (2003).

    Article  Google Scholar 

  13. 13

    A. H. Thissen, A. J. P. Hayes, A. P. Kingshott, A. G. Johnson, A. E. C. Harvey, and A. H. J. Griesser, Smart Mater. Struct. 11, 792 (2002).

    Article  CAS  Google Scholar 

  14. 14

    S. Iwanaga, Y. Akiyama, A. Kikuchi, M. Yamato, K. Sakai, and T. Okano, Biomaterials 26, 5395 (2005).

    Article  CAS  Google Scholar 

  15. 15

    M. Yamato, C. Konno, S. Koike, Y. Isoi, T. Shimizu, A. Kikuchi, K. Makino, and T. Okano, J. Biomed. Mater. Res. 67A, 1065 (2003).

    Article  CAS  Google Scholar 

  16. 16

    V. V. Semak and N. B. Dahotre, Surface Engineering Series: Lasers in Surface Engineering(ASM International, Materials Park, OH, 1998), Vol. 1, pp. 35–67.

    Google Scholar 

  17. 17

    N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, Chem. Rev. 103, 519 (2003).

    Article  CAS  Google Scholar 

  18. 18

    T. Lippert and J. T. Dickinson, Chem. Rev. 103, 453 (2003).

    Article  CAS  Google Scholar 

  19. 19

    N. S. Murthy, J. J. Martin, R. D. Prabhu, L. Zhou, and R. L. Headrick, J. Appl. Phys. 100, 023538 (2006).

    Article  Google Scholar 

  20. 20

    C. C. Chu and Z. Kizil, Surg. Gynecol. Obstet. 168, 233 (1989).

    CAS  Google Scholar 

  21. 21

    U. Klinge, B. Klosterhalfen, J. Conze, W. Limberg, B. Obolenski, A. P. Øttinger, and V. Schumpelick, Eur. J. Surg. 164, 951 (1998).

    Article  CAS  Google Scholar 

  22. 22

    B. M. Soares et al., J. Biomed. Mater. Res. 32, 293 (1996).

    Article  CAS  Google Scholar 

  23. 23

    G. Riepe et al., Eur. J. Vasc. Endovasc Surg. 13, 540 (1997).

    Article  CAS  Google Scholar 

  24. 24

    K. Tweden, J. D. Cameron, A. Razzouk, W. Holmberg, and S. Kelly, J. Heart Valve Dis. 6, 553 (1997).

    CAS  Google Scholar 

  25. 25

    M. Abramoff, P. Magalhães, and S. Ram, Biophotonics Int. 11, 36 (2004).

    Google Scholar 

  26. 26

    H. J. Sung, S. G. Eskin, Y. Sakurai, A. Yee, N. Kataoka, and L. V. McIntire, Ann. Biomed. Eng. 33, 1546 (2005).

    Article  Google Scholar 

  27. 27

    D. Isvoranu and M. D. Staicovici, Int. J. Heat Mass Transfer 47, 3769 (2004).

    Article  CAS  Google Scholar 

  28. 28

    T. Bahners and E. Schollmeyer, J. Appl. Phys. 66, 1884 (1989).

    Article  Google Scholar 

  29. 29

    C. W. Kan, J. Appl. Polym. Sci. 107, 1584 (2008).

    Article  CAS  Google Scholar 

  30. 30

    T. Textor, T. Bahners, and E. Schollmyer, J. Ind. Textiles 32, 279 (2003).

    Article  CAS  Google Scholar 

  31. 31

    R. Pankov and K. M. Yamada, J. Cell. Sci. 115, 3861 (2002).

    Article  CAS  Google Scholar 

  32. 32

    A. J. Bergman and K. Zygourakis, Biomaterials 20, 2235 (1999).

    Article  CAS  Google Scholar 

  33. 33

    A. Mardilovich, J. A. Craig, M. Q. McCammon, A. Garg, and E. Kokkoli, Langmuir 22, 3259 (2006).

    Article  CAS  Google Scholar 

  34. 34

    H. J. Sung, P. Chandra, M. D. Treiser, E. Liu, C. P. Iovine, P. V. Moghe, and J. Kohn, J. Cell. Physiol. 218, 549 (2009).

    Article  CAS  Google Scholar 

  35. 35

    M. P. Corriveau et al., J. Pathol. 217, 534 (2009).

    Article  Google Scholar 

  36. 36

    M. D. Treiser, E. Liu, R. A. Dubin, H. J. Sung, J. Kohn, and P. V. Moghe, BioTechniques 43, 361 (2007).

    Article  CAS  Google Scholar 

  37. 37

    M. R. Bubb, I. Spector, B. B. Beyer, and K. M. Fosen, J. Biol. Chem. 275, 5163 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joachim Kohn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chandra, P., Lai, K., Sung, HJ. et al. UV laser-ablated surface textures as potential regulator of cellular response. Biointerphases 5, 53–59 (2010). https://doi.org/10.1116/1.3438080

Download citation