Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

UV laser-ablated surface textures as potential regulator of cellular response

Article metrics

Abstract

Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ≈4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.

References

  1. 1

    B. G. Keselowsky, D. M. Collard, and A. J. Garcia, Biomaterials 25, 5947 (2004).

  2. 2

    F. X. Jiang, B. Yurke, B. L. Firestein, and N. A. Langrana, Ann. Biomed. Eng. 36, 1565 (2008).

  3. 3

    J. Tan and W. M. Saltzman, Biomaterials 25, 3593 (2004).

  4. 4

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).

  5. 5

    Z. W. Kowalski, Vacuum 63, 603 (2001).

  6. 6

    A. F. von Recum, J. Biomed. Mater. Res. 18, 323 (1984).

  7. 7

    R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. C. Wang, G. M. Whitesides, and D. E. Ingber, Science 264, 696 (1994).

  8. 8

    S. N. Bhatia, M. L. Yarmush, and M. Toner, J. Biomed. Mater. Res. 34, 189 (1997).

  9. 9

    Y. Ito, Biomaterials 20, 2333 (1999).

  10. 10

    C. D. McFarland, C. H. Thomas, C. DeFilippis, J. G. Steele, and K. E. Healy, J. Biomed. Mater. Res. 49, 200 (2000).

  11. 11

    C. D. W. Wilkinson, M. Riehle, M. Wood, J. Gallagher, and A. S. G. Curtis, Mater. Sci. Eng., C 19, 263 (2002).

  12. 12

    P. Li, U. Bakowsky, F. Yu, C. Loehbach, F. Muecklich, and C. M. Lehr, IEEE Trans. Nanobiosci. 2, 138 (2003).

  13. 13

    A. H. Thissen, A. J. P. Hayes, A. P. Kingshott, A. G. Johnson, A. E. C. Harvey, and A. H. J. Griesser, Smart Mater. Struct. 11, 792 (2002).

  14. 14

    S. Iwanaga, Y. Akiyama, A. Kikuchi, M. Yamato, K. Sakai, and T. Okano, Biomaterials 26, 5395 (2005).

  15. 15

    M. Yamato, C. Konno, S. Koike, Y. Isoi, T. Shimizu, A. Kikuchi, K. Makino, and T. Okano, J. Biomed. Mater. Res. 67A, 1065 (2003).

  16. 16

    V. V. Semak and N. B. Dahotre, Surface Engineering Series: Lasers in Surface Engineering(ASM International, Materials Park, OH, 1998), Vol. 1, pp. 35–67.

  17. 17

    N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, Chem. Rev. 103, 519 (2003).

  18. 18

    T. Lippert and J. T. Dickinson, Chem. Rev. 103, 453 (2003).

  19. 19

    N. S. Murthy, J. J. Martin, R. D. Prabhu, L. Zhou, and R. L. Headrick, J. Appl. Phys. 100, 023538 (2006).

  20. 20

    C. C. Chu and Z. Kizil, Surg. Gynecol. Obstet. 168, 233 (1989).

  21. 21

    U. Klinge, B. Klosterhalfen, J. Conze, W. Limberg, B. Obolenski, A. P. Øttinger, and V. Schumpelick, Eur. J. Surg. 164, 951 (1998).

  22. 22

    B. M. Soares et al., J. Biomed. Mater. Res. 32, 293 (1996).

  23. 23

    G. Riepe et al., Eur. J. Vasc. Endovasc Surg. 13, 540 (1997).

  24. 24

    K. Tweden, J. D. Cameron, A. Razzouk, W. Holmberg, and S. Kelly, J. Heart Valve Dis. 6, 553 (1997).

  25. 25

    M. Abramoff, P. Magalhães, and S. Ram, Biophotonics Int. 11, 36 (2004).

  26. 26

    H. J. Sung, S. G. Eskin, Y. Sakurai, A. Yee, N. Kataoka, and L. V. McIntire, Ann. Biomed. Eng. 33, 1546 (2005).

  27. 27

    D. Isvoranu and M. D. Staicovici, Int. J. Heat Mass Transfer 47, 3769 (2004).

  28. 28

    T. Bahners and E. Schollmeyer, J. Appl. Phys. 66, 1884 (1989).

  29. 29

    C. W. Kan, J. Appl. Polym. Sci. 107, 1584 (2008).

  30. 30

    T. Textor, T. Bahners, and E. Schollmyer, J. Ind. Textiles 32, 279 (2003).

  31. 31

    R. Pankov and K. M. Yamada, J. Cell. Sci. 115, 3861 (2002).

  32. 32

    A. J. Bergman and K. Zygourakis, Biomaterials 20, 2235 (1999).

  33. 33

    A. Mardilovich, J. A. Craig, M. Q. McCammon, A. Garg, and E. Kokkoli, Langmuir 22, 3259 (2006).

  34. 34

    H. J. Sung, P. Chandra, M. D. Treiser, E. Liu, C. P. Iovine, P. V. Moghe, and J. Kohn, J. Cell. Physiol. 218, 549 (2009).

  35. 35

    M. P. Corriveau et al., J. Pathol. 217, 534 (2009).

  36. 36

    M. D. Treiser, E. Liu, R. A. Dubin, H. J. Sung, J. Kohn, and P. V. Moghe, BioTechniques 43, 361 (2007).

  37. 37

    M. R. Bubb, I. Spector, B. B. Beyer, and K. M. Fosen, J. Biol. Chem. 275, 5163 (2000).

Download references

Author information

Correspondence to Joachim Kohn.

Rights and permissions

Reprints and Permissions

About this article