Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Macromolecular depletion modulates the binding of red blood cells to activated endothelial cells

Abstract

Adhesion of red blood cells (RBCs) to endothelial cells (ECs) is usually insignificant but an enhanced adhesion has been observed in various diseases associated with vascular complications. This abnormal adhesion under pathological conditions such as sickle cell disease has been correlated with increased levels of various plasma proteins but the detailed underlying mechanism(s) remains unclear. Usually it is assumed that the proadhesive effects of plasma proteins originate from ligand interactions cross-linking receptors on adjacent cells, but explicit results detailing binding sites or receptors for some proteins (e.g., fibrinogen) on either RBC or EC surfaces that would support this model are missing. In this study, the authors tested whether there is an alternative mechanism. Their results demonstrate that dextran 2 MDa promotes the adhesion of normal RBCs to thrombin-activated ECs and that this effect becomes more pronounced with increasing thrombin concentration or with prolonged thrombin incubation time. It is concluded that depletion interaction originating from nonadsorbing macromolecules (i.e., dextran) can modulate the adhesion of red blood cells to thrombin-activated EC. This study thereby suggests macromolecular depletion as an alternative mechanism for the adhesion-promoting effects of nonadsorbing plasma proteins. These findings should not only aid in getting a better understanding of diseases associated with vascular complications but should also have many potential applications in biomedical or biotechnological areas that require the control of cell-cell or cell surface interactions.

References

  1. 1

    R. P. Hebbel, M. A. Boogaerts, J. W. Eaton, and M. H. Steinberg, N. Engl. J. Med. 302, 992 (1980).

    Article  CAS  Google Scholar 

  2. 2

    J. L. Wautier, R. C. Paton, M. P. Wautier, D. Pintigny, E. Abadie, P. Passa, and J. P. Caen, N. Engl. J. Med. 305, 237 (1981).

    Article  CAS  Google Scholar 

  3. 3

    N. Mohandas and E. Evans, Blood 64, 282 (1984).

    CAS  Google Scholar 

  4. 4

    G. A. Barabino, L. V. McIntire, S. G. Eskin, D. A. Sears, and M. Udden, Blood 70, 152 (1987).

    CAS  Google Scholar 

  5. 5

    R. P. Hebbel, O. Yamada, C. F. Moldow, H. S. Jacob, J. G. White, and J. W. Eaton, J. Clin. Invest. 65, 154 (1980).

    Article  CAS  Google Scholar 

  6. 6

    Y. T. Shiu and L. V. McIntire, Ann. Biomed. Eng. 31, 1299 (2003).

    Article  Google Scholar 

  7. 7

    P. S. Frenette and G. F. Atweh, J. Clin. Invest. 117, 850 (2007).

    Article  CAS  Google Scholar 

  8. 8

    R. A. Swerlick, J. R. Eckman, A. Kumar, M. Jeitler, and T. M. Wick, Blood 82, 1891 (1993).

    CAS  Google Scholar 

  9. 9

    A. Kumar, J. R. Eckmam, R. A. Swerlick, and T. M. Wick, Blood 88, 4348 (1996).

    CAS  Google Scholar 

  10. 10

    K. Sugihara, T. Sugihara, N. Mohandas, and R. P. Hebbel, Blood 80, 2634 (1992).

    CAS  Google Scholar 

  11. 11

    B. E. Gee and O. S. Platt, Blood 85, 268 (1995).

    CAS  Google Scholar 

  12. 12

    D. K. Kaul, H. M. Tsai, X. D. Liu, M. T. Nakada, R. L. Nagel, and B. S. Coller, Blood 95, 368 (2000).

    CAS  Google Scholar 

  13. 13

    B. N. Setty, S. Kulkarni, and M. J. Stuart, Blood 99, 1564 (2002).

    Article  CAS  Google Scholar 

  14. 14

    A. Solovey, Y. Lin, P. Browne, S. Choong, E. Wayner, and R. P. Hebbel, N. Engl. J. Med. 337, 1584 (1997).

    Article  CAS  Google Scholar 

  15. 15

    Y. Sugama C. Tiruppathi K. Offakidevi, T. T. Andersen, J. W. d. Fenton, and A. B. Malik, J. Cell Biol. 119, 935 (1992).

    Article  CAS  Google Scholar 

  16. 16

    N. M. Matsui, L. Borsig, S. D. Rosen, M. Yaghmai, A. Varki, and S. H. Embury, Blood 98, 1955 (2001).

    Article  CAS  Google Scholar 

  17. 17

    N. M. Matsui, A. Varki, and S. H. Embury, Blood 100, 3790 (2002).

    Article  CAS  Google Scholar 

  18. 18

    M. Laposata, D. K. Dovnarsky, and H. S. Shin, Blood 62, 549 (1983).

    CAS  Google Scholar 

  19. 19

    A. B. Manodori, N. M. Matsui, J. Y. Chen, and S. H. Embury, Blood 92, 3445 (1998).

    CAS  Google Scholar 

  20. 20

    M. Peters, B. E. C. Plaat, H. Ten Cate, H. J. Wolters, R. S. Weening, and D. P. M. Brandjes, Thromb. Haemostasis 71, 169 (1994).

    CAS  Google Scholar 

  21. 21

    J. G. N. Garcia, F. M. Pavalko, and C. E. Patterson, Blood Coagul Fibrinolysis 6, 609 (1995).

    Article  CAS  Google Scholar 

  22. 22

    R. P. Hebbel, R. Osarogiagbon, and D. Kaul, Microcirculation (N.Y.) 11, 129 (2004).

    Article  CAS  Google Scholar 

  23. 23

    P. S. Frenette, Curr. Opin. Hematol. 9, 101 (2002).

    Article  Google Scholar 

  24. 24

    J. M. Harlan, Blood 95, 365 (2000).

    CAS  Google Scholar 

  25. 25

    R. P. Hebbel, C. F. Moldow, and M. H. Steinberg, Blood 58, 947 (1981).

    CAS  Google Scholar 

  26. 26

    J. L. Wautier, D. Pintigny, M. P. Wautier, R. C. Paton, F. Galacteros, P. Passa, and J. P. Caen, J. Lab. Clin. Med. 101, 911 (1983).

    CAS  Google Scholar 

  27. 27

    R. P. Hebbel, J. Clin. Invest. 99, 2561 (1997).

    Article  CAS  Google Scholar 

  28. 28

    B. N. Y. Setty and S. G. Betal, Blood 111, 905 (2008).

    Article  CAS  Google Scholar 

  29. 29

    R. P. Hebbel, Blood 77, 214 (1991).

    CAS  Google Scholar 

  30. 30

    J. L. Wautier, M. P. Wautier, D. Pintigny, F. Galacteros, A. Courillon, P. Passa, and J. P. Caen, Blood Cells 9, 221 (1983).

    CAS  Google Scholar 

  31. 31

    J. L. Wautier, D. Pintigny, and J. Maclouf, J. Lab. Clin. Med. 107, 210 (1986).

    CAS  Google Scholar 

  32. 32

    Z. Zhang and B. Neu, Biophys. J. 97, 1031 (2009).

    Article  CAS  Google Scholar 

  33. 33

    Y. Yang, H. Eng, and B. Neu, Langmuir 26, 2680 (2010).

    Article  CAS  Google Scholar 

  34. 34

    R. I. Feigin and D. H. Napper, J. Colloid Interface Sci. 75, 525 (1980).

    Article  CAS  Google Scholar 

  35. 35

    P. Jenkins and B. Vincent, Langmuir 12, 3107 (1996).

    Article  CAS  Google Scholar 

  36. 36

    B. Vincent, Colloids Surf. 50, 241 (1990).

    Article  CAS  Google Scholar 

  37. 37

    B. Vincent, J. Edwards, S. Emmett, and A. Jones, Colloids Surf. 18, 261 (1986).

    Article  CAS  Google Scholar 

  38. 38

    H. Bäumler, E. Donath, A. Krabi, W. Knippel, A. Budde, and H. Kiesewetter, Biorheology 33, 333 (1996).

    Article  Google Scholar 

  39. 39

    H. Bäumler and E. Donath, Stud. Biophys. 120, 113 (1987).

    Google Scholar 

  40. 40

    O. K. Baskurt et al., Clin. Hemorheol Microcirc 42, 75 (2009).

    Google Scholar 

  41. 41

    H. Bäumler, B. Neu, R. Mitlohner, R. Georgieva, H. J. Meiselman, and H. Kiesewetter, Biorheology 38, 39 (2001).

    Google Scholar 

  42. 42

    S. Rad and B. Neu, Eur. Phys. J. E 30, 135 (2009).

    Article  CAS  Google Scholar 

  43. 43

    A. Turhan, L. A. Weiss, N. Mohandas, B. S. Coller, and P. S. Frenette, Proc. Natl. Acad. Sci. U.S.A. 99, 3047 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte. Ltd.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, Y., Koo, S., Lin, C.S. et al. Macromolecular depletion modulates the binding of red blood cells to activated endothelial cells. Biointerphases 5, FA19–FA23 (2010). https://doi.org/10.1116/1.3460343

Download citation