Skip to main content

Journal for Biophysical Chemistry

Microarray-based enzyme profiling: Recent advances and applications (Review)

Abstract

Enzymes are an integral part of biological systems. They constitute a significant majority of all proteins expressed (an estimated 18%–29%) within eukaryotic genomes. It thus comes as no major surprise that enzymes have been implicated in many diseases and form the second largest group of drug targets, after receptors. Despite their involvement in a multitude of physiological processes, only a limited number of enzymes have thus far been well-characterized. Consequently, little is understood about the physiological roles, substrate specificity, and downstream targets of the vast majority of these important proteins. In order to facilitate the biological characterization of enzymes, as well as their adoption as drug targets, there is a need for global “-omics” solutions that bridge the gap in understanding these proteins and their interactions. Herein the authors showcase how microarray methods can be adopted to facilitate investigations into enzymes and their properties, in a high-throughput manner. They will focus on several major classes of enzymes, including kinases, phosphatases, and proteases. As a result of research efforts over the last decade, these groups of enzymes have become readily amenable to microarray-based profiling methods. The authors will also describe the specific design considerations that are required to develop the appropriate chemical tools and libraries to characterize each enzyme class. These include peptide substrates, activity-based probes, and chemical compound libraries, which may be rapidly assembled using efficient combinatorial synthesis or “click chemistry” strategies. Taken together, microarrays offer a powerful means to study, profile, and also discover potent small molecules with which to modulate enzyme activity.

Reference

  1. D. Ghosh and L. M. Poisson, Genomics 93, 13 (2009).

    Article  CAS  Google Scholar 

  2. M. Uttamchandani, D. P. Walsh, S. Q. Yao, and Y. T. Chang, Curr. Opin. Chem. Biol. 9, 4 (2005).

    Article  CAS  Google Scholar 

  3. G. MacBeath and A. Saghatelian, Curr. Opin. Chem. Biol. 13, 501 (2009).

    Article  CAS  Google Scholar 

  4. P. B. McGarvey et al., PLoS ONE 4, e7162 (2009).

    Article  CAS  Google Scholar 

  5. M. Uttamchandani, C. H. Lu, and S. Q. Yao, Acc. Chem. Res. 42, 1183 (2009).

    Article  CAS  Google Scholar 

  6. M. Uttamchandani and S. Q. Yao, Curr. Pharm. Des. 14, 2428 (2008).

    Article  CAS  Google Scholar 

  7. D. A. Hall, J. Ptacek, and M. Snyder, Mech. Ageing Dev. 128, 161 (2007).

    Article  CAS  Google Scholar 

  8. R. P. Ekins, J. Pharm. Biomed. Anal. 7, 155 (1989).

    Article  CAS  Google Scholar 

  9. Y. Hu, M. Uttamchandani, and S. Q. Yao, Comb. Chem. High Throughput Screening 9, 203 (2006).

    Article  CAS  Google Scholar 

  10. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).

    Article  CAS  Google Scholar 

  11. M. Schena, D. Shalon, R. Heller, A. Chai, P. O. Brown, and R. W. Davis, Proc. Natl. Acad. Sci. U.S.A. 93, 10614 (1996).

    Article  CAS  Google Scholar 

  12. U. Maskos and E. M. Southern, Nucleic Acids Res. 21, 2269 (1993).

    Article  CAS  Google Scholar 

  13. U. Maskos and E. M. Southern, Nucleic Acids Res. 21, 2267 (1993).

    Article  CAS  Google Scholar 

  14. M. Uttamchandani, J. L. Neo, B. N. Ong, and S. Moochhala, Trends Biotechnol. 27, 53 (2009).

    Article  CAS  Google Scholar 

  15. S. M. Yoo, J. H. Choi, S. Y. Lee, and N. C. Yoo, J. Microbiol. Biotechnol. 19, 635 (2009).

    Google Scholar 

  16. U. Bilitewski, Methods Mol. Biol. 509, 1 (2009).

    Article  CAS  Google Scholar 

  17. M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, Trends Biotechnol. 20, 160 (2002).

    Article  CAS  Google Scholar 

  18. M. Uttamchandani, J. Wang, and S. Q. Yao, Mol. Biosyst. 2, 58 (2006).

    Article  CAS  Google Scholar 

  19. P. Bertone and M. Snyder, FEBS J. 272, 5400 (2005).

    Article  CAS  Google Scholar 

  20. J. Wang, M. Uttamchandani, L. P. Sun, and S. Q. Yao, Chem. Commun. (Cambridge) 2006, 717.

  21. F. Breitling, A. Nesterov, V. Stadler, T. Felgenhauer, and F. R. Bischoff, Mol. Biosyst. 5, 224 (2009).

    Article  CAS  Google Scholar 

  22. T. Horlacher and P. H. Seeberger, Chem. Soc. Rev. 37, 1414 (2008).

    Article  CAS  Google Scholar 

  23. T. Feizi, F. Fazio, W. Chai, and C. H. Wong, Curr. Opin. Struct. Biol. 13, 637 (2003).

    Article  CAS  Google Scholar 

  24. P. H. Liang, C. Y. Wu, W. A. Greenberg, and C. H. Wong, Curr. Opin. Chem. Biol. 12, 86 (2008).

    Article  CAS  Google Scholar 

  25. J. L. Duffner, P. A. Clemons, and A. N. Koehler, Curr. Opin. Chem. Biol. 11, 74 (2007).

    Article  CAS  Google Scholar 

  26. G. MacBeath, A. N. Koehler, and S. L. Schreiber, J. Am. Chem. Soc. 121, 7967 (1999).

    Article  CAS  Google Scholar 

  27. G. MacBeath and S. L. Schreiber, Science 289, 1760 (2000).

    CAS  Google Scholar 

  28. B. Schweitzer, P. Predki, and M. Snyder, Proteomics 3, 2190 (2003).

    Article  CAS  Google Scholar 

  29. H. Zhu et al., Science 293, 2101 (2001).

    Article  CAS  Google Scholar 

  30. D. B. Wheeler, A. E. Carpenter, and D. M. Sabatini, Nat. Genet. 37, S25 (2005).

    Article  CAS  Google Scholar 

  31. J. Ziauddin and D. M. Sabatini, Nature (London) 411, 107 (2001).

    Article  CAS  Google Scholar 

  32. T. G. Fernandes, M. M. Diogo, D. S. Clark, J. S. Dordick, and J. M. Cabral, Trends Biotechnol. 27, 342 (2009).

    Article  CAS  Google Scholar 

  33. A. Hoos et al., Am. J. Pathol. 158, 1245 (2001).

    Article  CAS  Google Scholar 

  34. J. Wang, M. Uttamchandani, H. Sun, and S. Q. Yao, QSAR Comb. Sci. 25, 1009 (2006).

    Article  CAS  Google Scholar 

  35. A. Wolf-Yadlin, M. Sevecka, and G. MacBeath, Curr. Opin. Chem. Biol. 13, 398 (2009).

    Article  CAS  Google Scholar 

  36. O. Schilling and C. M. Overall, Curr. Opin. Chem. Biol. 11, 36 (2007).

    Article  CAS  Google Scholar 

  37. D. N. Gosalia, C. M. Salisbury, J. A. Ellman, and S. L. Diamond, Mol. Cell Proteomics 4, 626 (2005).

    Article  CAS  Google Scholar 

  38. D. N. Gosalia, C. M. Salisbury, D. J. Maly, J. A. Ellman, and S. L. Diamond, Proteomics 5, 1292 (2005).

    Article  CAS  Google Scholar 

  39. X. Han, G. Yamanouchi, T. Mori, J. H. Kang, T. Niidome, and Y. Katayama, J. Biomol. Screening 14, 256 (2009).

    CAS  Google Scholar 

  40. S. Shigaki et al., Anal. Sci. 23, 271 (2007).

    Article  CAS  Google Scholar 

  41. M. Sevecka and G. MacBeath, Nat. Methods 3, 825 (2006).

    Article  CAS  Google Scholar 

  42. R. B. Jones, A. Gordus, J. A. Krall, and G. MacBeath, Nature (London) 439, 168 (2006).

    Article  CAS  Google Scholar 

  43. M. A. Stiffler, V. P. Grantcharova, M. Sevecka, and G. MacBeath, J. Am. Chem. Soc. 128, 5913 (2006).

    Article  CAS  Google Scholar 

  44. M. A. Stiffler, J. R. Chen, V. P. Grantcharova, Y. Lei, D. Fuchs, J. E. Allen, L. A. Zaslavskaia, and G. MacBeath, Science 317, 364 (2007).

    Article  CAS  Google Scholar 

  45. T. S. Gujral and G. MacBeath, Sci. Signal. 2, pe65 (2009).

    Article  Google Scholar 

  46. C. M. Overall and O. Kleifeld, Nat. Rev. Cancer 6, 227 (2006).

    Article  CAS  Google Scholar 

  47. X. Duburcq et al., Bioconjugate Chem. 15, 307 (2004).

    Article  CAS  Google Scholar 

  48. R. A. Copeland, M. R. Harpel, and P. J. Tummino, Expert Opin. Ther. Targets 11, 967 (2007).

    Article  CAS  Google Scholar 

  49. M. Eisenstein, Nature (London) 444, 959 (2006).

    Article  CAS  Google Scholar 

  50. G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, Science 298, 1912 (2002).

    Article  CAS  Google Scholar 

  51. N. D. Rawlings, A. J. Barrett, and A. Bateman, Nucleic Acids Res. 38, D227 (2010).

    Article  CAS  Google Scholar 

  52. S. Arena, S. Benvenuti, and A. Bardelli, Cell. Mol. Life Sci. 62, 2092 (2005).

    Article  CAS  Google Scholar 

  53. R. Frank, Tetrahedron 48, 9217 (1992).

    Article  CAS  Google Scholar 

  54. S. P. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, Science 251, 767 (1991).

    Article  CAS  Google Scholar 

  55. X. Gao, J. P. Pellois, Y. Na, Y. Kim, E. Gulari, and X. Zhou, Mol. Divers. 8, 177 (2004).

    Article  CAS  Google Scholar 

  56. F. Breitling, T. Felgenhauer, A. Nesterov, V. Lindenstruth, V. Stadler, and F. R. Bischoff, ChemBioChem 10, 803 (2009).

    Article  CAS  Google Scholar 

  57. M. Beyer et al., Science 318, 1888 (2007).

    Article  CAS  Google Scholar 

  58. F. G. Kuruvilla, A. F. Shamji, S. M. Sternson, P. J. Hergenrother, and S. L. Schreiber, Nature (London) 416, 653 (2002).

    Article  CAS  Google Scholar 

  59. A. N. Koehler, A. F. Shamji, and S. L. Schreiber, J. Am. Chem. Soc. 125, 8420 (2003).

    Article  CAS  Google Scholar 

  60. X. Y. Xiao, R. Li, H. Zhuang, B. Ewing, K. Karunaratne, J. Lillig, R. Brown, and K. C. Nicolaou, Biotechnol. Bioeng. 71, 44 (2000).

    Article  CAS  Google Scholar 

  61. N. Kanoh, S. Kumashiro, S. Simizu, Y. Kondoh, S. Hatakeyama, H. Tashiro, and H. Osada, Angew. Chem., Int. Ed. Engl. 42, 5584 (2003).

    Article  CAS  Google Scholar 

  62. N. Kanoh et al., Chem. Asian J. 1, 789 (2006).

    Article  CAS  Google Scholar 

  63. N. Kanoh, H. Takayama, K. Honda, T. Moriya, T. Teruya, S. Simizu, H. Osada and Y. Iwabuchi, Bioconjugate Chem. 21, 182 (2010).

    Article  CAS  Google Scholar 

  64. N. Ramachandran, E. Hainsworth, G. Demirkan, and J. LaBaer, Methods Mol. Biol. 328, 1 (2006).

    CAS  Google Scholar 

  65. M. L. Lesaicherre, M. Uttamchandani, G. Y. Chen, and S. Q. Yao, Bioorg. Med. Chem. Lett. 12, 2079 (2002).

    Article  CAS  Google Scholar 

  66. N. Winssinger, R. Damoiseaux, D. C. Tully, B. H. Geierstanger, K. Burdick, and J. L. Harris, Chem. Biol. 11, 1351 (2004).

    Article  CAS  Google Scholar 

  67. N. Winssinger and J. L. Harris, Expert Rev. Proteomics 2, 937 (2005).

    Article  CAS  Google Scholar 

  68. H. D. Urbina, F. Debaene, B. Jost, C. Bole-Feysot, D. E. Mason, P. Kuzmic, J. L. Harris, and N. Winssinger, ChemBioChem 7, 1790 (2006).

    Article  CAS  Google Scholar 

  69. S. Melkko, J. Scheuermann, C. E. Dumelin, and D. Neri, Nat. Biotechnol. 22, 568 (2004).

    Article  CAS  Google Scholar 

  70. J. Scheuermann, C. E. Dumelin, S. Melkko, Y. Zhang, L. Mannocci, M. Jaggi, J. Sobek, and D. Neri, Bioconjugate Chem. 19, 778 (2008).

    Article  CAS  Google Scholar 

  71. K. S. Lam and M. Renil, Curr. Opin. Chem. Biol. 6, 353 (2002).

    Article  CAS  Google Scholar 

  72. R. B. Merrifield, J. Am. Chem. Soc. 85, 2149 (1963).

    Article  CAS  Google Scholar 

  73. S. M. Sternson, J. B. Louca, J. C. Wong, and S. L. Schreiber, J. Am. Chem. Soc. 123, 1740 (2001).

    Article  CAS  Google Scholar 

  74. A. Lee and J. G. Breitenbucher, Curr. Opin. Drug Discovery Dev. 6, 494 (2003).

    CAS  Google Scholar 

  75. H. C. Kolb and K. B. Sharpless, Drug Discovery Today 8, 1128 (2003).

    Article  CAS  Google Scholar 

  76. C. W. Tornøe, C. Christensen, and M. Meldal, J. Org. Chem. 67, 3057 (2002).

    Article  CAS  Google Scholar 

  77. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem., Int. Ed. Engl. 41, 2596 (2002).

    Article  CAS  Google Scholar 

  78. M. Köhn, R. Wacker, C. Peters, H. Schroder, L. Soulere, R. Breinbauer, C. M. Niemeyer, and H. Waldmann, Angew. Chem., Int. Ed. Engl. 42, 5830 (2003).

    Article  CAS  Google Scholar 

  79. J. Kalia, N. L. Abbott, and R. T. Raines, Bioconjugate Chem. 18, 1064 (2007).

    Article  CAS  Google Scholar 

  80. R. Srinivasan, J. Li, S. L. Ng, K. A. Kalesh, and S. Q. Yao, Nat. Protoc. 2, 2655 (2007).

    Article  CAS  Google Scholar 

  81. D. M. Marsden, R. L. Nicholson, M. Ladlow, and D. R. Spring, Chem. Commun. (Cambridge) 2009, 7107.

  82. N. Gupta et al., Nat. Chem. 2, 138 (2010).

    Article  CAS  Google Scholar 

  83. C. M. Salisbury, D. J. Maly, and J. A. Ellman, J. Am. Chem. Soc. 124, 14868 (2002).

    Article  CAS  Google Scholar 

  84. Q. Zhu, M. Uttamchandani, D. Li, M. L. Lesaicherre, and S. Q. Yao, Org. Lett. 5, 1257 (2003).

    Article  CAS  Google Scholar 

  85. S. Park and I. Shin, Org. Lett. 9, 1675 (2007).

    Article  CAS  Google Scholar 

  86. Y. H. Oh, M. Y. Hong, Z. Jin, T. Lee, M. K. Han, S. Park, and H. S. Kim, Biosens. Bioelectron. 22, 1260 (2007).

    Article  CAS  Google Scholar 

  87. D. N. Gosalia, W. S. Denney, C. M. Salisbury, J. A. Ellman, and S. L. Diamond, Biotechnol. Bioeng. 94, 1099 (2006).

    Article  CAS  Google Scholar 

  88. P. Babiak and J. L. Reymond, Anal. Chem. 77, 373 (2005).

    Article  CAS  Google Scholar 

  89. P. Angenendt, H. Lehrach, J. Kreutzberger, and J. Glokler, Proteomics 5, 420 (2005).

    Article  CAS  Google Scholar 

  90. M. Uttamchandani, X. Huang, G. Y. Chen, and S. Q. Yao, Bioorg. Med. Chem. Lett. 15, 2135 (2005).

    Article  CAS  Google Scholar 

  91. L. Mugherli, O. N. Burchak, L. A. Balakireva, A. Thomas, F. Chatelain, and M. Y. Balakirev, Angew. Chem., Int. Ed. Engl. 48, 7639 (2009).

    Article  CAS  Google Scholar 

  92. M. L. Lesaicherre, M. Uttamchandani, G. Y. Chen, and S. Q. Yao, Bioorg. Med. Chem. Lett. 12, 2085 (2002).

    Article  CAS  Google Scholar 

  93. J. R. Falsey, M. Renil, S. Park, S. Li, and K. S. Lam, Bioconjugate Chem. 12, 346 (2001).

    Article  CAS  Google Scholar 

  94. B. T. Houseman, J. H. Huh, S. J. Kron, and M. Mrksich, Nat. Biotechnol. 20, 270 (2002).

    Article  CAS  Google Scholar 

  95. M. Uttamchandani, E. W. Chan, G. Y. Chen, and S. Q. Yao, Bioorg. Med. Chem. Lett. 13, 2997 (2003).

    Article  CAS  Google Scholar 

  96. K. Martin, T. H. Steinberg, L. A. Cooley, K. R. Gee, J. M. Beechem, and W. F. Patton, Proteomics 3, 1244 (2003).

    Article  CAS  Google Scholar 

  97. M. Schutkowski, U. Reimer, S. Panse, L. Y. Dong, J. M. Lizcano, D. R. Alessi, and J. Schneider-Mergener, Angew. Chem., Int. Ed. 43, 2671 (2004).

    Article  CAS  Google Scholar 

  98. M. Schutkowski, U. Reineke, and U. Reimer, ChemBioChem 6, 513 (2005).

    Article  CAS  Google Scholar 

  99. S. Panse, L. Dong, A. Burian, R. Carus, M. Schutkowski, U. Reimer, and J. Schneider-Mergener, Mol. Divers. 8, 291 (2004).

    Article  CAS  Google Scholar 

  100. L. Rychlewski, M. Kschischo, L. Dong, M. Schutkowski, and U. Reimer, J. Mol. Biol. 336, 307 (2004).

    Article  CAS  Google Scholar 

  101. H. Wang and D. L. Brautigan, Mol. Cell Proteomics 5, 2124 (2006).

    Article  CAS  Google Scholar 

  102. O. Stoevesandt, M. Elbs, K. Kohler, A. C. Lellouch, R. Fischer, T. Andre, and R. Brock, Proteomics 5, 2010 (2005).

    Article  CAS  Google Scholar 

  103. H. Sun, C. H. Lu, M. Uttamchandani, Y. Xia, Y. C. Liou, and S. Q. Yao, Angew. Chem., Int. Ed. Engl. 47, 1698 (2008).

    Article  CAS  Google Scholar 

  104. M. Köhn et al., Angew. Chem., Int. Ed. Engl. 46, 7700 (2007).

    Article  CAS  Google Scholar 

  105. H. Sun, L. P. Tan, L. Gao, and S. Q. Yao, Chem. Commun. (Cambridge) 2009, 677.

  106. K. Usui, K. Y. Tomizaki, T. Ohyama, K. Nokihara, and H. Mihara, Mol. Biosyst. 2, 113 (2006).

    Article  CAS  Google Scholar 

  107. M. Takahashi, K. Nokihara, and H. Mihara, Chem. Biol. 10, 53 (2003).

    Article  CAS  Google Scholar 

  108. M. M. Reddy and T. Kodadek, Proc. Natl. Acad. Sci. U.S.A. 102, 12672 (2005).

    Article  CAS  Google Scholar 

  109. D. N. Gosalia and S. L. Diamond, Proc. Natl. Acad. Sci. U.S.A. 100, 8721 (2003).

    Article  CAS  Google Scholar 

  110. M. Uttamchandani, K. Liu, R. C. Panicker, and S. Q. Yao, Chem. Commun. (Cambridge) 2007, 1518.

  111. S. A. Sieber, T. S. Mondala, S. R. Head, and B. F. Cravatt, J. Am. Chem. Soc. 126, 15640 (2004).

    Article  CAS  Google Scholar 

  112. G. Y. Chen, M. Uttamchandani, Q. Zhu, G. Wang, and S. Q. Yao, ChemBioChem 4, 336 (2003).

    Article  CAS  Google Scholar 

  113. H. Schmidinger, H. Susani-Etzerodt, R. Birner-Gruenberger, and A. Hermetter, ChemBioChem 7, 527 (2006).

    Article  CAS  Google Scholar 

  114. J. Eppinger, D. P. Funeriu, M. Miyake, L. Denizot, and J. Miyake, Angew. Chem., Int. Ed. Engl. 43, 3806 (2004).

    Article  CAS  Google Scholar 

  115. D. P. Funeriu, J. Eppinger, L. Denizot, M. Miyake, and J. Miyake, Nat. Biotechnol. 23, 622 (2005).

    Article  CAS  Google Scholar 

  116. A. J. Vegas, J. E. Bradner, W. Tang, O. M. McPherson, E. F. Greenberg, A. N. Koehler, and S. L. Schreiber, Angew. Chem., Int. Ed. Engl. 46, 7960 (2007).

    Article  CAS  Google Scholar 

  117. M. Uttamchandani, W. L. Lee, J. Wang, and S. Q. Yao, J. Am. Chem. Soc. 129, 13110 (2007).

    Article  CAS  Google Scholar 

  118. C. H. Lu, H. Sun, F. B. Abu Bakar, M. Uttamchandani, W. Zhou, Y. C. Liou, and S. Q. Yao, Angew. Chem., Int. Ed. Engl. 47, 7438 (2008).

    Article  CAS  Google Scholar 

  119. M. Y. Lee, C. B. Park, J. S. Dordick, and D. S. Clark, Proc. Natl. Acad. Sci. U.S.A. 102, 983 (2005).

    Article  CAS  Google Scholar 

  120. S. M. Sukumaran, B. Potsaid, M. Y. Lee, D. S. Clark, and J. S. Dordick, J. Biomol. Screening 14, 668 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Uttamchandani.

Additional information

This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte. Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uttamchandani, M., Moochhala, S. Microarray-based enzyme profiling: Recent advances and applications (Review). Biointerphases 5, FA24–FA31 (2010). https://doi.org/10.1116/1.3462969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3462969