Skip to main content

Journal for Biophysical Chemistry

Microarray-based enzyme profiling: Recent advances and applications (Review)

Abstract

Enzymes are an integral part of biological systems. They constitute a significant majority of all proteins expressed (an estimated 18%–29%) within eukaryotic genomes. It thus comes as no major surprise that enzymes have been implicated in many diseases and form the second largest group of drug targets, after receptors. Despite their involvement in a multitude of physiological processes, only a limited number of enzymes have thus far been well-characterized. Consequently, little is understood about the physiological roles, substrate specificity, and downstream targets of the vast majority of these important proteins. In order to facilitate the biological characterization of enzymes, as well as their adoption as drug targets, there is a need for global “-omics” solutions that bridge the gap in understanding these proteins and their interactions. Herein the authors showcase how microarray methods can be adopted to facilitate investigations into enzymes and their properties, in a high-throughput manner. They will focus on several major classes of enzymes, including kinases, phosphatases, and proteases. As a result of research efforts over the last decade, these groups of enzymes have become readily amenable to microarray-based profiling methods. The authors will also describe the specific design considerations that are required to develop the appropriate chemical tools and libraries to characterize each enzyme class. These include peptide substrates, activity-based probes, and chemical compound libraries, which may be rapidly assembled using efficient combinatorial synthesis or “click chemistry” strategies. Taken together, microarrays offer a powerful means to study, profile, and also discover potent small molecules with which to modulate enzyme activity.

Reference

  1. 1

    D. Ghosh and L. M. Poisson, Genomics 93, 13 (2009).

    CAS  Article  Google Scholar 

  2. 2

    M. Uttamchandani, D. P. Walsh, S. Q. Yao, and Y. T. Chang, Curr. Opin. Chem. Biol. 9, 4 (2005).

    CAS  Article  Google Scholar 

  3. 3

    G. MacBeath and A. Saghatelian, Curr. Opin. Chem. Biol. 13, 501 (2009).

    CAS  Article  Google Scholar 

  4. 4

    P. B. McGarvey et al., PLoS ONE 4, e7162 (2009).

    Article  CAS  Google Scholar 

  5. 5

    M. Uttamchandani, C. H. Lu, and S. Q. Yao, Acc. Chem. Res. 42, 1183 (2009).

    CAS  Article  Google Scholar 

  6. 6

    M. Uttamchandani and S. Q. Yao, Curr. Pharm. Des. 14, 2428 (2008).

    CAS  Article  Google Scholar 

  7. 7

    D. A. Hall, J. Ptacek, and M. Snyder, Mech. Ageing Dev. 128, 161 (2007).

    CAS  Article  Google Scholar 

  8. 8

    R. P. Ekins, J. Pharm. Biomed. Anal. 7, 155 (1989).

    CAS  Article  Google Scholar 

  9. 9

    Y. Hu, M. Uttamchandani, and S. Q. Yao, Comb. Chem. High Throughput Screening 9, 203 (2006).

    CAS  Article  Google Scholar 

  10. 10

    M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).

    CAS  Article  Google Scholar 

  11. 11

    M. Schena, D. Shalon, R. Heller, A. Chai, P. O. Brown, and R. W. Davis, Proc. Natl. Acad. Sci. U.S.A. 93, 10614 (1996).

    CAS  Article  Google Scholar 

  12. 12

    U. Maskos and E. M. Southern, Nucleic Acids Res. 21, 2269 (1993).

    CAS  Article  Google Scholar 

  13. 13

    U. Maskos and E. M. Southern, Nucleic Acids Res. 21, 2267 (1993).

    CAS  Article  Google Scholar 

  14. 14

    M. Uttamchandani, J. L. Neo, B. N. Ong, and S. Moochhala, Trends Biotechnol. 27, 53 (2009).

    CAS  Article  Google Scholar 

  15. 15

    S. M. Yoo, J. H. Choi, S. Y. Lee, and N. C. Yoo, J. Microbiol. Biotechnol. 19, 635 (2009).

    Google Scholar 

  16. 16

    U. Bilitewski, Methods Mol. Biol. 509, 1 (2009).

    CAS  Article  Google Scholar 

  17. 17

    M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, Trends Biotechnol. 20, 160 (2002).

    CAS  Article  Google Scholar 

  18. 18

    M. Uttamchandani, J. Wang, and S. Q. Yao, Mol. Biosyst. 2, 58 (2006).

    CAS  Article  Google Scholar 

  19. 19

    P. Bertone and M. Snyder, FEBS J. 272, 5400 (2005).

    CAS  Article  Google Scholar 

  20. 20

    J. Wang, M. Uttamchandani, L. P. Sun, and S. Q. Yao, Chem. Commun. (Cambridge) 2006, 717.

  21. 21

    F. Breitling, A. Nesterov, V. Stadler, T. Felgenhauer, and F. R. Bischoff, Mol. Biosyst. 5, 224 (2009).

    CAS  Article  Google Scholar 

  22. 22

    T. Horlacher and P. H. Seeberger, Chem. Soc. Rev. 37, 1414 (2008).

    CAS  Article  Google Scholar 

  23. 23

    T. Feizi, F. Fazio, W. Chai, and C. H. Wong, Curr. Opin. Struct. Biol. 13, 637 (2003).

    CAS  Article  Google Scholar 

  24. 24

    P. H. Liang, C. Y. Wu, W. A. Greenberg, and C. H. Wong, Curr. Opin. Chem. Biol. 12, 86 (2008).

    CAS  Article  Google Scholar 

  25. 25

    J. L. Duffner, P. A. Clemons, and A. N. Koehler, Curr. Opin. Chem. Biol. 11, 74 (2007).

    CAS  Article  Google Scholar 

  26. 26

    G. MacBeath, A. N. Koehler, and S. L. Schreiber, J. Am. Chem. Soc. 121, 7967 (1999).

    CAS  Article  Google Scholar 

  27. 27

    G. MacBeath and S. L. Schreiber, Science 289, 1760 (2000).

    CAS  Google Scholar 

  28. 28

    B. Schweitzer, P. Predki, and M. Snyder, Proteomics 3, 2190 (2003).

    CAS  Article  Google Scholar 

  29. 29

    H. Zhu et al., Science 293, 2101 (2001).

    CAS  Article  Google Scholar 

  30. 30

    D. B. Wheeler, A. E. Carpenter, and D. M. Sabatini, Nat. Genet. 37, S25 (2005).

    CAS  Article  Google Scholar 

  31. 31

    J. Ziauddin and D. M. Sabatini, Nature (London) 411, 107 (2001).

    CAS  Article  Google Scholar 

  32. 32

    T. G. Fernandes, M. M. Diogo, D. S. Clark, J. S. Dordick, and J. M. Cabral, Trends Biotechnol. 27, 342 (2009).

    CAS  Article  Google Scholar 

  33. 33

    A. Hoos et al., Am. J. Pathol. 158, 1245 (2001).

    CAS  Article  Google Scholar 

  34. 34

    J. Wang, M. Uttamchandani, H. Sun, and S. Q. Yao, QSAR Comb. Sci. 25, 1009 (2006).

    CAS  Article  Google Scholar 

  35. 35

    A. Wolf-Yadlin, M. Sevecka, and G. MacBeath, Curr. Opin. Chem. Biol. 13, 398 (2009).

    CAS  Article  Google Scholar 

  36. 36

    O. Schilling and C. M. Overall, Curr. Opin. Chem. Biol. 11, 36 (2007).

    CAS  Article  Google Scholar 

  37. 37

    D. N. Gosalia, C. M. Salisbury, J. A. Ellman, and S. L. Diamond, Mol. Cell Proteomics 4, 626 (2005).

    CAS  Article  Google Scholar 

  38. 38

    D. N. Gosalia, C. M. Salisbury, D. J. Maly, J. A. Ellman, and S. L. Diamond, Proteomics 5, 1292 (2005).

    CAS  Article  Google Scholar 

  39. 39

    X. Han, G. Yamanouchi, T. Mori, J. H. Kang, T. Niidome, and Y. Katayama, J. Biomol. Screening 14, 256 (2009).

    CAS  Google Scholar 

  40. 40

    S. Shigaki et al., Anal. Sci. 23, 271 (2007).

    CAS  Article  Google Scholar 

  41. 41

    M. Sevecka and G. MacBeath, Nat. Methods 3, 825 (2006).

    CAS  Article  Google Scholar 

  42. 42

    R. B. Jones, A. Gordus, J. A. Krall, and G. MacBeath, Nature (London) 439, 168 (2006).

    CAS  Article  Google Scholar 

  43. 43

    M. A. Stiffler, V. P. Grantcharova, M. Sevecka, and G. MacBeath, J. Am. Chem. Soc. 128, 5913 (2006).

    CAS  Article  Google Scholar 

  44. 44

    M. A. Stiffler, J. R. Chen, V. P. Grantcharova, Y. Lei, D. Fuchs, J. E. Allen, L. A. Zaslavskaia, and G. MacBeath, Science 317, 364 (2007).

    CAS  Article  Google Scholar 

  45. 45

    T. S. Gujral and G. MacBeath, Sci. Signal. 2, pe65 (2009).

    Article  Google Scholar 

  46. 46

    C. M. Overall and O. Kleifeld, Nat. Rev. Cancer 6, 227 (2006).

    CAS  Article  Google Scholar 

  47. 47

    X. Duburcq et al., Bioconjugate Chem. 15, 307 (2004).

    CAS  Article  Google Scholar 

  48. 48

    R. A. Copeland, M. R. Harpel, and P. J. Tummino, Expert Opin. Ther. Targets 11, 967 (2007).

    CAS  Article  Google Scholar 

  49. 49

    M. Eisenstein, Nature (London) 444, 959 (2006).

    CAS  Article  Google Scholar 

  50. 50

    G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, Science 298, 1912 (2002).

    CAS  Article  Google Scholar 

  51. 51

    N. D. Rawlings, A. J. Barrett, and A. Bateman, Nucleic Acids Res. 38, D227 (2010).

    CAS  Article  Google Scholar 

  52. 52

    S. Arena, S. Benvenuti, and A. Bardelli, Cell. Mol. Life Sci. 62, 2092 (2005).

    CAS  Article  Google Scholar 

  53. 53

    R. Frank, Tetrahedron 48, 9217 (1992).

    CAS  Article  Google Scholar 

  54. 54

    S. P. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, Science 251, 767 (1991).

    CAS  Article  Google Scholar 

  55. 55

    X. Gao, J. P. Pellois, Y. Na, Y. Kim, E. Gulari, and X. Zhou, Mol. Divers. 8, 177 (2004).

    CAS  Article  Google Scholar 

  56. 56

    F. Breitling, T. Felgenhauer, A. Nesterov, V. Lindenstruth, V. Stadler, and F. R. Bischoff, ChemBioChem 10, 803 (2009).

    CAS  Article  Google Scholar 

  57. 57

    M. Beyer et al., Science 318, 1888 (2007).

    CAS  Article  Google Scholar 

  58. 58

    F. G. Kuruvilla, A. F. Shamji, S. M. Sternson, P. J. Hergenrother, and S. L. Schreiber, Nature (London) 416, 653 (2002).

    CAS  Article  Google Scholar 

  59. 59

    A. N. Koehler, A. F. Shamji, and S. L. Schreiber, J. Am. Chem. Soc. 125, 8420 (2003).

    CAS  Article  Google Scholar 

  60. 60

    X. Y. Xiao, R. Li, H. Zhuang, B. Ewing, K. Karunaratne, J. Lillig, R. Brown, and K. C. Nicolaou, Biotechnol. Bioeng. 71, 44 (2000).

    CAS  Article  Google Scholar 

  61. 61

    N. Kanoh, S. Kumashiro, S. Simizu, Y. Kondoh, S. Hatakeyama, H. Tashiro, and H. Osada, Angew. Chem., Int. Ed. Engl. 42, 5584 (2003).

    CAS  Article  Google Scholar 

  62. 62

    N. Kanoh et al., Chem. Asian J. 1, 789 (2006).

    CAS  Article  Google Scholar 

  63. 63

    N. Kanoh, H. Takayama, K. Honda, T. Moriya, T. Teruya, S. Simizu, H. Osada and Y. Iwabuchi, Bioconjugate Chem. 21, 182 (2010).

    CAS  Article  Google Scholar 

  64. 64

    N. Ramachandran, E. Hainsworth, G. Demirkan, and J. LaBaer, Methods Mol. Biol. 328, 1 (2006).

    CAS  Google Scholar 

  65. 65

    M. L. Lesaicherre, M. Uttamchandani, G. Y. Chen, and S. Q. Yao, Bioorg. Med. Chem. Lett. 12, 2079 (2002).

    CAS  Article  Google Scholar 

  66. 66

    N. Winssinger, R. Damoiseaux, D. C. Tully, B. H. Geierstanger, K. Burdick, and J. L. Harris, Chem. Biol. 11, 1351 (2004).

    CAS  Article  Google Scholar 

  67. 67

    N. Winssinger and J. L. Harris, Expert Rev. Proteomics 2, 937 (2005).

    CAS  Article  Google Scholar 

  68. 68

    H. D. Urbina, F. Debaene, B. Jost, C. Bole-Feysot, D. E. Mason, P. Kuzmic, J. L. Harris, and N. Winssinger, ChemBioChem 7, 1790 (2006).

    CAS  Article  Google Scholar 

  69. 69

    S. Melkko, J. Scheuermann, C. E. Dumelin, and D. Neri, Nat. Biotechnol. 22, 568 (2004).

    CAS  Article  Google Scholar 

  70. 70

    J. Scheuermann, C. E. Dumelin, S. Melkko, Y. Zhang, L. Mannocci, M. Jaggi, J. Sobek, and D. Neri, Bioconjugate Chem. 19, 778 (2008).

    CAS  Article  Google Scholar 

  71. 71

    K. S. Lam and M. Renil, Curr. Opin. Chem. Biol. 6, 353 (2002).

    CAS  Article  Google Scholar 

  72. 72

    R. B. Merrifield, J. Am. Chem. Soc. 85, 2149 (1963).

    CAS  Article  Google Scholar 

  73. 73

    S. M. Sternson, J. B. Louca, J. C. Wong, and S. L. Schreiber, J. Am. Chem. Soc. 123, 1740 (2001).

    CAS  Article  Google Scholar 

  74. 74

    A. Lee and J. G. Breitenbucher, Curr. Opin. Drug Discovery Dev. 6, 494 (2003).

    CAS  Google Scholar 

  75. 75

    H. C. Kolb and K. B. Sharpless, Drug Discovery Today 8, 1128 (2003).

    CAS  Article  Google Scholar 

  76. 76

    C. W. Tornøe, C. Christensen, and M. Meldal, J. Org. Chem. 67, 3057 (2002).

    Article  CAS  Google Scholar 

  77. 77

    V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem., Int. Ed. Engl. 41, 2596 (2002).

    CAS  Article  Google Scholar 

  78. 78

    M. Köhn, R. Wacker, C. Peters, H. Schroder, L. Soulere, R. Breinbauer, C. M. Niemeyer, and H. Waldmann, Angew. Chem., Int. Ed. Engl. 42, 5830 (2003).

    Article  CAS  Google Scholar 

  79. 79

    J. Kalia, N. L. Abbott, and R. T. Raines, Bioconjugate Chem. 18, 1064 (2007).

    CAS  Article  Google Scholar 

  80. 80

    R. Srinivasan, J. Li, S. L. Ng, K. A. Kalesh, and S. Q. Yao, Nat. Protoc. 2, 2655 (2007).

    CAS  Article  Google Scholar 

  81. 81

    D. M. Marsden, R. L. Nicholson, M. Ladlow, and D. R. Spring, Chem. Commun. (Cambridge) 2009, 7107.

  82. 82

    N. Gupta et al., Nat. Chem. 2, 138 (2010).

    CAS  Article  Google Scholar 

  83. 83

    C. M. Salisbury, D. J. Maly, and J. A. Ellman, J. Am. Chem. Soc. 124, 14868 (2002).

    CAS  Article  Google Scholar 

  84. 84

    Q. Zhu, M. Uttamchandani, D. Li, M. L. Lesaicherre, and S. Q. Yao, Org. Lett. 5, 1257 (2003).

    CAS  Article  Google Scholar 

  85. 85

    S. Park and I. Shin, Org. Lett. 9, 1675 (2007).

    CAS  Article  Google Scholar 

  86. 86

    Y. H. Oh, M. Y. Hong, Z. Jin, T. Lee, M. K. Han, S. Park, and H. S. Kim, Biosens. Bioelectron. 22, 1260 (2007).

    CAS  Article  Google Scholar 

  87. 87

    D. N. Gosalia, W. S. Denney, C. M. Salisbury, J. A. Ellman, and S. L. Diamond, Biotechnol. Bioeng. 94, 1099 (2006).

    CAS  Article  Google Scholar 

  88. 88

    P. Babiak and J. L. Reymond, Anal. Chem. 77, 373 (2005).

    CAS  Article  Google Scholar 

  89. 89

    P. Angenendt, H. Lehrach, J. Kreutzberger, and J. Glokler, Proteomics 5, 420 (2005).

    CAS  Article  Google Scholar 

  90. 90

    M. Uttamchandani, X. Huang, G. Y. Chen, and S. Q. Yao, Bioorg. Med. Chem. Lett. 15, 2135 (2005).

    CAS  Article  Google Scholar 

  91. 91

    L. Mugherli, O. N. Burchak, L. A. Balakireva, A. Thomas, F. Chatelain, and M. Y. Balakirev, Angew. Chem., Int. Ed. Engl. 48, 7639 (2009).

    CAS  Article  Google Scholar 

  92. 92

    M. L. Lesaicherre, M. Uttamchandani, G. Y. Chen, and S. Q. Yao, Bioorg. Med. Chem. Lett. 12, 2085 (2002).

    CAS  Article  Google Scholar 

  93. 93

    J. R. Falsey, M. Renil, S. Park, S. Li, and K. S. Lam, Bioconjugate Chem. 12, 346 (2001).

    CAS  Article  Google Scholar 

  94. 94

    B. T. Houseman, J. H. Huh, S. J. Kron, and M. Mrksich, Nat. Biotechnol. 20, 270 (2002).

    CAS  Article  Google Scholar 

  95. 95

    M. Uttamchandani, E. W. Chan, G. Y. Chen, and S. Q. Yao, Bioorg. Med. Chem. Lett. 13, 2997 (2003).

    CAS  Article  Google Scholar 

  96. 96

    K. Martin, T. H. Steinberg, L. A. Cooley, K. R. Gee, J. M. Beechem, and W. F. Patton, Proteomics 3, 1244 (2003).

    CAS  Article  Google Scholar 

  97. 97

    M. Schutkowski, U. Reimer, S. Panse, L. Y. Dong, J. M. Lizcano, D. R. Alessi, and J. Schneider-Mergener, Angew. Chem., Int. Ed. 43, 2671 (2004).

    CAS  Article  Google Scholar 

  98. 98

    M. Schutkowski, U. Reineke, and U. Reimer, ChemBioChem 6, 513 (2005).

    CAS  Article  Google Scholar 

  99. 99

    S. Panse, L. Dong, A. Burian, R. Carus, M. Schutkowski, U. Reimer, and J. Schneider-Mergener, Mol. Divers. 8, 291 (2004).

    CAS  Article  Google Scholar 

  100. 100

    L. Rychlewski, M. Kschischo, L. Dong, M. Schutkowski, and U. Reimer, J. Mol. Biol. 336, 307 (2004).

    CAS  Article  Google Scholar 

  101. 101

    H. Wang and D. L. Brautigan, Mol. Cell Proteomics 5, 2124 (2006).

    CAS  Article  Google Scholar 

  102. 102

    O. Stoevesandt, M. Elbs, K. Kohler, A. C. Lellouch, R. Fischer, T. Andre, and R. Brock, Proteomics 5, 2010 (2005).

    CAS  Article  Google Scholar 

  103. 103

    H. Sun, C. H. Lu, M. Uttamchandani, Y. Xia, Y. C. Liou, and S. Q. Yao, Angew. Chem., Int. Ed. Engl. 47, 1698 (2008).

    CAS  Article  Google Scholar 

  104. 104

    M. Köhn et al., Angew. Chem., Int. Ed. Engl. 46, 7700 (2007).

    Article  CAS  Google Scholar 

  105. 105

    H. Sun, L. P. Tan, L. Gao, and S. Q. Yao, Chem. Commun. (Cambridge) 2009, 677.

  106. 106

    K. Usui, K. Y. Tomizaki, T. Ohyama, K. Nokihara, and H. Mihara, Mol. Biosyst. 2, 113 (2006).

    CAS  Article  Google Scholar 

  107. 107

    M. Takahashi, K. Nokihara, and H. Mihara, Chem. Biol. 10, 53 (2003).

    CAS  Article  Google Scholar 

  108. 108

    M. M. Reddy and T. Kodadek, Proc. Natl. Acad. Sci. U.S.A. 102, 12672 (2005).

    CAS  Article  Google Scholar 

  109. 109

    D. N. Gosalia and S. L. Diamond, Proc. Natl. Acad. Sci. U.S.A. 100, 8721 (2003).

    CAS  Article  Google Scholar 

  110. 110

    M. Uttamchandani, K. Liu, R. C. Panicker, and S. Q. Yao, Chem. Commun. (Cambridge) 2007, 1518.

  111. 111

    S. A. Sieber, T. S. Mondala, S. R. Head, and B. F. Cravatt, J. Am. Chem. Soc. 126, 15640 (2004).

    CAS  Article  Google Scholar 

  112. 112

    G. Y. Chen, M. Uttamchandani, Q. Zhu, G. Wang, and S. Q. Yao, ChemBioChem 4, 336 (2003).

    CAS  Article  Google Scholar 

  113. 113

    H. Schmidinger, H. Susani-Etzerodt, R. Birner-Gruenberger, and A. Hermetter, ChemBioChem 7, 527 (2006).

    CAS  Article  Google Scholar 

  114. 114

    J. Eppinger, D. P. Funeriu, M. Miyake, L. Denizot, and J. Miyake, Angew. Chem., Int. Ed. Engl. 43, 3806 (2004).

    CAS  Article  Google Scholar 

  115. 115

    D. P. Funeriu, J. Eppinger, L. Denizot, M. Miyake, and J. Miyake, Nat. Biotechnol. 23, 622 (2005).

    CAS  Article  Google Scholar 

  116. 116

    A. J. Vegas, J. E. Bradner, W. Tang, O. M. McPherson, E. F. Greenberg, A. N. Koehler, and S. L. Schreiber, Angew. Chem., Int. Ed. Engl. 46, 7960 (2007).

    CAS  Article  Google Scholar 

  117. 117

    M. Uttamchandani, W. L. Lee, J. Wang, and S. Q. Yao, J. Am. Chem. Soc. 129, 13110 (2007).

    CAS  Article  Google Scholar 

  118. 118

    C. H. Lu, H. Sun, F. B. Abu Bakar, M. Uttamchandani, W. Zhou, Y. C. Liou, and S. Q. Yao, Angew. Chem., Int. Ed. Engl. 47, 7438 (2008).

    CAS  Article  Google Scholar 

  119. 119

    M. Y. Lee, C. B. Park, J. S. Dordick, and D. S. Clark, Proc. Natl. Acad. Sci. U.S.A. 102, 983 (2005).

    CAS  Article  Google Scholar 

  120. 120

    S. M. Sukumaran, B. Potsaid, M. Y. Lee, D. S. Clark, and J. S. Dordick, J. Biomol. Screening 14, 668 (2009).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Uttamchandani.

Additional information

This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte. Ltd.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uttamchandani, M., Moochhala, S. Microarray-based enzyme profiling: Recent advances and applications (Review). Biointerphases 5, FA24–FA31 (2010). https://doi.org/10.1116/1.3462969

Download citation