Skip to main content

Journal for Biophysical Chemistry

Surface modification of poly(l-lactic acid) with biomolecules to promote endothelialization

Abstract

Rapid endothelialization is important for biodegradable blood-contacting devices not only to prevent thrombosis but also to prevent degradation debris from entering the bloodstream and causing further complications. Here the authors report a three-step surface modification method, by which biomolecules, such as gelatin and chitosan, are covalently immobilized on the surface of plasma-treated poly(l-lactic acid) (PLLA) via —COOH groups introduced by acrylic acid grafting polymerization. Surface characterization techniques, including x-ray photoelectron spectroscopy, contact angle measurement, and colorimetric methods for surface density of functional groups, proved the feasibility and stability of this surface modification method. Surface wettability was increased by biomolecules immobilization. The —COOH surface density was measured to be 4.17±0.15 μmol/cm2, the and amount of gelatin immobilized was 4.8 μg/cm2. Human umbilical vein endothelial cell was used during in vitro study at seeding density of 104 cells/cm2. PLLA-gAA-gelatin surface was found to enhance cell adhesion, spreading, focal adhesion formation, and proliferation significantly. Chitosan-modified PLLA shows marginally improvement in cell adhesion and proliferation. Endothelialization was achieved within 7 days on both modified PLLA surfaces. In conclusion, this work demonstrates the feasibility of the surface modification method, and its ability to promote complete endothelialization for cardiovascular applications.

References

  1. 1

    I. K. Mohamed-Hashem and D. A. Mitchell, J. Orthod. 27, 198 (2000).

    CAS  Article  Google Scholar 

  2. 2

    A. W. Asagar and R. Bonan, US Cardiol. 6, 81 (2009).

    Google Scholar 

  3. 3

    M. C. Chen, H. W. Tsai, Y. Chang, W. Y. Lai, F. L. Mi, C. T. Liu, H. S. Wong, and H. W. Sung, Biomacromolecules 8, 2774 (2007).

    CAS  Article  Google Scholar 

  4. 4

    S. S. Venkatraman, L. P. Tan, J. F. D. Joso, Y. C. F. Boey, and X. Wang, Biomaterials 27, 1573 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Y. Huang, S. S. Venkatraman, F. Y. C. Boey, E. M. Lahti, P. R. Umashankar, M. Mohanty, S. Arumugam, L. Khanolkar, and S. Vaishnav, Biomaterials 31, 4382 (2010).

    CAS  Article  Google Scholar 

  6. 6

    J. W. Orr, F. J. Kelly, P. Y. Roland, and P. B. Blitzer, Gynecol. Oncol. 92, 57 (2004).

    CAS  Article  Google Scholar 

  7. 7

    T. Y. Lim, C. K. Poh, and W. Wang, J. Mater. Sci. 20, 1537 (2009).

    Google Scholar 

  8. 8

    S. Venkatraman and F. Boey, J. Controlled Release 120, 149 (2007).

    CAS  Article  Google Scholar 

  9. 9

    S. Venkatraman, F. Boey, and L. L. Lao, Prog. Polym. Sci. 33, 853 (2008).

    CAS  Article  Google Scholar 

  10. 10

    M. Deutsch, J. Meinhart, P. Zilla, N. Howanietz, M. Gorlitzer, A. Froeschl, A. Stuempflen, D. Bezuidenhout, and M. Grabenwoeger, J. Vasc. Surg. 49, 352 (2009).

    Article  Google Scholar 

  11. 11

    A. Muto, T. Nishibe, H. Dardik, and A. Dardik, J. Vasc. Surg. 50, 206 (2009).

    Article  Google Scholar 

  12. 12

    D. Narayan and S. S. Venkatraman, J. Biomed. Mater. Res. Part A 87A, 710 (2008).

    CAS  Article  Google Scholar 

  13. 13

    N. K. Chia, S. S. Venkatraman, F. Y. C. Boey, S. Cadart, and J. S. C. Loo, J. Biomed. Mater. Res. Part A 84A, 980 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Y. Zhu, C. Gao, T. He, X. Liu, and J. Shen, Biomacromolecules 4, 446 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Y. Zhu, C. Gao, T. He, and J. Shen, Biomaterials 25, 423 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Y. Zhu, C. Gao, X. Liu, T. He, and J. Shen, Tissue Eng. 10, 53 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Y. Zhu, C. Gao, X. Liu, and J. Shen, Biomacromolecules 3, 1312 (2002).

    CAS  Article  Google Scholar 

  18. 18

    P. Chevallier, N. Castonguay, S. Turgeon, N. Dubrulle, D. Mantovani, P. H. McBreen, J. C. Wittmann, and G. Laroche, J. Phys. Chem. B 105, 12490 (2001).

    CAS  Article  Google Scholar 

  19. 19

    S. K. Øiseth, A. Krozer, B. Kasemo, and J. Lausmaa, Appl. Surf. Sci. 202, 92 (2002).

    Article  Google Scholar 

  20. 20

    J. S. Bae, E. J. Seo, and I. K. Kang, Biomaterials 20, 529 (1999).

    CAS  Article  Google Scholar 

  21. 21

    I. K. Kang, B. K. Kwon, J. H. Lee, and H. B. Lee, Biomaterials 14, 787 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Y. J. Kim, I. K. Kang, M. W. Huh, and S. C. Yoon, Biomaterials 21, 121 (2000).

    CAS  Article  Google Scholar 

  23. 23

    See supplementary material at E-BJIOBN-5-003003 for (1) Fig. 1 gelatin concentration standard curve by Bradford method; (2) Fig. 2 cell number standard curve measured by WST-8 cell counting kit; (3) Fig. 3 the C1S spectra of (A) PLLA, (B) PLLA-gAA, (C) PLLA-gAA-gelatin, and (D) PLAA-gAA-chitosan resolved into four characteristic peaks at 282.2, 288.1, 286.5, and 285 eV indicated the functional groups of O-C=O, N-C+O, C-O (C-N), and C-C, respectively.

  24. 24

    D. K. Kim, In Vitro Cell Dev-An. 31, 419 (1995).

    CAS  Article  Google Scholar 

  25. 25

    R. C. Quirk, M. C. Davies, S. J. B. Tendler, W. C. Chan, and K. M. Shakesheff, Langmuir 17, 2817 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Z. Ding, J. Chen, S. Gao, J. Chang, J. Zhang, and E. T. Kang, Biomaterials 25, 1059 (2004).

    CAS  Article  Google Scholar 

  27. 27

    X. Hou, B. Zhang, F. She, Y. Cui, K. Shi, and K. Yao, Chin. J. Polym. Sci. 21, 277 (2003).

    CAS  Google Scholar 

  28. 28

    B. Geiger, J. P. Spatz, and A. D. Bershadsky, Nat. Rev. Mol. Cell Biol. 10, 21 (2009).

    CAS  Article  Google Scholar 

  29. 29

    N. O. Deakin and C. E. Turner, J. Cell Sci. 121, 2435 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Y. Liu and M. B. Chan-Park, Biomaterials 31, 1158 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Y. Huang, S. Onyeri, M. Siewe, A. Moshfeghian, and S. V. Madihally, Biomaterials 26, 7616 (2005).

    CAS  Article  Google Scholar 

  32. 32

    E. Eisenbarth, D. Velten, and J. Breme, Biomol. Eng. 24, 27 (2007).

    CAS  Article  Google Scholar 

  33. 33

    U. Hersel, C. Dahmen, and H. Kessler, Biomaterials 24, 4385 (2003).

    CAS  Article  Google Scholar 

  34. 34

    S. P. Massia and J. A. Hubbell, J. Biol. Chem. 267, 14019 (1992).

    CAS  Google Scholar 

  35. 35

    R. Tzoneva, N. Faucheux, and T. Groth, Biochim. Biophys. Acta 1771, 1538 (2007).

    Article  Google Scholar 

  36. 36

    Y. Arima and H. Iwata, Biomaterials 28, 3074 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Y. Tamada and Y. Ikada, J. Colloid Interface Sci. 155, 334 (1993).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yun Xia.

Additional information

This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte Ltd.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xia, Y., Boey, F. & Venkatraman, S.S. Surface modification of poly(l-lactic acid) with biomolecules to promote endothelialization. Biointerphases 5, FA32–FA40 (2010). https://doi.org/10.1116/1.3467508

Download citation