Skip to main content

Journal for Biophysical Chemistry

cBSA-147 for the preparation of bacterial biofilms in a microchannel reactor

Abstract

Whole cells are attractive biocatalysts, particularly if the reaction requires cofactors or involves multiple transformations. Immobilization of the catalyst is often a prerequisite for continuous processes. The highly cationic chemically modified plasma protein bovine serum albumin (cBSA-147) has been applied for the electrostatically mediated immobilization of the planktonic bacterium E. coli BL21 star (DE3), and the resulting biofilms were superior to those formed on poly-L-lysine coated surfaces. The biocatalyst was immobilized in a capillary column (inside diameter of 530 μm and L=30 m) and evaluated in the enantioselective reduction of ethyl acetoacetate to R-(−)ethyl hydroxybutyrate. In continuous operation in the microreactor format, the productivity of the cells was about 30% higher than that determined in a bench-scale fermentation system. This increase is attributed to the improved mass transfer over short geometrical dimensions. The similarity in the results indicates that studies on a biofilm-coated microreactor can be used for the accelerated collection of data for process optimization.

References

  1. 1

    D. J. Pollard and J. M. Woodley, Trends Biotechnol. 25, 66 (2007).

    Article  CAS  Google Scholar 

  2. 2

    G. J. Lye, P. Ayazi-Shamlou, F. Baganz, P. A. Dalby, and J. M. Woodley, Trends Biotechnol. 21, 29 (2003).

    Article  CAS  Google Scholar 

  3. 3

    M. Micheletti and G. J. Lye, Curr. Opin. Biotechnol. 17, 611 (2006).

    Article  CAS  Google Scholar 

  4. 4

    K. Geyer, J. D. C. Codee, and P. H. Seeberger, Chem.-Eur. J. 12, 8434 (2006).

    Article  CAS  Google Scholar 

  5. 5

    A. M. Thayer, Chem. Eng. News 83, 43 (2005).

    Google Scholar 

  6. 6

    P. D. I. Fletcher, S. J. Haswell, E. Pombo-Villar, B. H. Warrington, P. Watts, S. Y. F. Wong, and X. Zang, Tetrahedron 58, 4735 (2002).

    Article  CAS  Google Scholar 

  7. 7

    M. Miyazaki, H. Nakamura, and H. Maeda, Chem. Lett. 30, 442 (2001).

    Article  Google Scholar 

  8. 8

    K. Kanno, H. Maeda, S. Izumo, M. Ikuno, K. Takeshita, A. Tashiro, and M. Fujii, Lab Chip 2, 15 (2002).

    Article  CAS  Google Scholar 

  9. 9

    Y. Fatima, H. Kansal, P. Soni, and U. C. Banerjee, Process Biochem. (Oxford, U.K.) 42, 1412 (2007).

    Article  CAS  Google Scholar 

  10. 10

    D. Chen, J. Chen, W. Zhong, and Z. Cheng, Bioresour. Technol. 99, 4702 (2008).

    Article  CAS  Google Scholar 

  11. 11

    K. Schroer et al., J. Biotechnol. 132, 438 (2007).

    Article  CAS  Google Scholar 

  12. 12

    J. F. Ng and S. Jaenicke, Aust. J. Chem. 62, 1034 (2009).

    Article  CAS  Google Scholar 

  13. 13

    J. Huang, H. Yamaji, and H. Fukuda, J. Biosci. Bioeng. 104, 98 (2007).

    Article  CAS  Google Scholar 

  14. 14

    S. E. Cowan, D. Liepman, and J. D. Keasling, Biotechnol. Lett. 23, 1235 (2001).

    Article  CAS  Google Scholar 

  15. 15

    D. G. Hoare and D. E. Koshland, Jr., J. Biol. Chem. 242, 2447 (1967).

    CAS  Google Scholar 

  16. 16

    L. Zöphel, K. Eisele, R. Gropeanu, A. Rouhanipour, K. Koynov, I. Lieberwirth, K. Müllen, and T. Weil, Macromol. Chem. Phys. 211, 146 (2010).

    Article  Google Scholar 

  17. 17

    K. Eisele et al., Biomaterials (submitted).

  18. 18

    K. Hirayama, S. Akashi, M. Furuya, and K. Fukuhara, Biochem. Biophys. Res. Commun. 173, 639 (1990).

    Article  CAS  Google Scholar 

  19. 19

    Z. G. Peng, K. Hidajat, and M. S. Uddin, J. Colloid Interface Sci. 271, 277 (2004).

    Article  CAS  Google Scholar 

  20. 20

    W. L. W. Hau, D. W. Trau, N. J. Sucher, M. Wong, and Y. Zohar, J. Micromech. Microeng. 13, 272 (2003).

    Article  CAS  Google Scholar 

  21. 21

    S. Ritz, K. Eisele, S. Ding, J. Dorn, T. Weil, and E.-K. Sinner, BioInterphases (submitted).

  22. 22

    A. Bershadsky, A. Chausovsky, E. Becker, A. Lyubimova, and B. Geiger, Curr. Biol. 6, 1279 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Stephan Jaenicke or Tanja Weil.

Additional information

This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte Ltd.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ng, J.F., Jaenicke, S., Eisele, K. et al. cBSA-147 for the preparation of bacterial biofilms in a microchannel reactor. Biointerphases 5, FA41–FA47 (2010). https://doi.org/10.1116/1.3474475

Download citation