Skip to main content

Journal for Biophysical Chemistry

Iron-based ferritin nanocore as a contrast agent a)


Self-assembling protein cages have been exploited as templates for nanoparticle synthesis. The ferritin molecule, a protein cage present in most living systems, stores excess soluble ferrous iron in the form of an insoluble ferric complex within its cavity. Magnetic nanocores formed by loading excess iron within an engineered ferritin from Archaeoglobus fulgidus (AfFtn-AA) were studied as a potential magnetic resonance (MR) imaging contrast agent. The self-assembly characteristics of the AfFtn-AA were investigated using dynamic light scattering technique and size exclusion chromatography. Homogeneous size distribution of the assembled nanoparticles was observed using transmission electron microscopy. The magnetic properties of iron-loaded AfFtn-AA were studied using vibrating sample magnetometry. Images obtained from a 3.0 T whole-body MRI scanner showed significant brightening of T1 images and signal loss of T2 images with increased concentrations of iron-loaded AfFtn-AA. The analysis of the MR image intensities showed extremely high R2 values (5300 mM−1 s−1) for the iron-loaded AfFtn-AA confirming its potential as a T2 contrast agent.


  1. 1

    M. R. Oliva and S. Saini, Cancer Imaging 4, S42 (2004).

    Article  Google Scholar 

  2. 2

    J. Lu et al., Biomaterials 30, 2919 (2009).

    CAS  Article  Google Scholar 

  3. 3

    B. A. Moffat et al., Mol. Imaging 2, 324 (2003).

    CAS  Article  Google Scholar 

  4. 4

    S. Mornet, S. Vasseur, F. Grasset, and E. Daguet, J. Mater. Chem. 14, 2161 (2004).

    CAS  Article  Google Scholar 

  5. 5

    P. Sánchez, E. Valero, N. Galvez, J. M. Dominguez-Vera, M. Marinone, G. Poletti, M. Corti, and A. Lascialferi, Dalton Trans. 5, 800 (2009).

    Article  Google Scholar 

  6. 6

    S. L. Fossheim, A. K. Fahlvik, J. Klaveness, and R. N. Muller, Magn. Reson. Imaging 17, 83 (1999).

    CAS  Article  Google Scholar 

  7. 7

    G. J. Strijkers, W. J. M. Mulder, R. B. van Heeswijk, P. M. Frederick, P. Bomans, P. C. M. M. Magusin, and K. Nicolay, Magn. Reson. Mater. Phys., Biol., Med. 18, 186 (2005).

    CAS  Google Scholar 

  8. 8

    F. Yang, Y. Li, Z. Chen, Y. Zhang, J. Wu, and N. Gu, Biomaterials 30, 3882 (2009).

    CAS  Article  Google Scholar 

  9. 9

    W. J. M. Mulder, G. J. Strijkers, G. A. F. van Tilborg, A. W. Griffioen, and K. Nicolay, NMR Biomed. 19, 142 (2006).

    CAS  Article  Google Scholar 

  10. 10

    S. Aime, L. Frullano, and S. G. Crich, Angew. Chem., Int. Ed. 41, 1017 (2002).

    CAS  Article  Google Scholar 

  11. 11

    H. Yoshimura, Colloids Surf., A 282–283, 464 (2006).

    Article  Google Scholar 

  12. 12

    M. Uchida et al., Magn. Reson. Med. 60, 1073 (2008).

    CAS  Article  Google Scholar 

  13. 13

    M. Uchida et al., J. Am. Chem. Soc. 128, 16626 (2006).

    CAS  Article  Google Scholar 

  14. 14

    E. Simsek and M. A. Kilic, J. Magn. Magn. Mater. 293, 509 (2005).

    CAS  Article  Google Scholar 

  15. 15

    N. D. Chasteen and P. M. Harrison, J. Struct. Biol. 126, 182 (1999).

    CAS  Article  Google Scholar 

  16. 16

    P. Harrison and P. Arosio, Biochim. Biophys. Acta 1275, 161 (1996).

    Article  Google Scholar 

  17. 17

    I. L. Angulo, D. T. Covas, A. A. Carneiro, O. Baffa, J. E. Junior, and G. Vilela, Revista Brasileira de Hematologia e Hemoterapia 30, 449 (2008).

    Google Scholar 

  18. 18

    M.-J. Kim, D. G. Mitchell, K. Ito, H.-W. L. Hann, Y. N. Park, and P. N. Kim, Abdom. Imaging 26, 149 (2001).

    CAS  Article  Google Scholar 

  19. 19

    P. Mazza et al., Hematologica 80, 398 (1995).

    CAS  Google Scholar 

  20. 20

    N. F. Schwenzer et al., Invest. Radiol. 43, 854 (2008).

    Article  Google Scholar 

  21. 21

    A. Taher, F. El Rassi, H. Isma'eel, S. Koussa, A. Inati, and M. D. Cappellini, Hematologica 93, 1584 (2008).

    CAS  Article  Google Scholar 

  22. 22

    I. Yamashita, H. Kirimura, M. Okuda, K. Nishio, K. I. Sano, K. Shiba, T.H. Kirimura, M. Okuda, K. Nishio, K. I. Sano, K. Shiba, T.H. Kirimura, M. Okuda, K. Nishio, K. I. Sano, K. Shiba, T.H. Kirimura, M. Okuda, K. Nishio, K. I. Sano, K. Shiba, T. Hayashi, M. Hara, and Y. Mishima, Small 2, 1148 (2006).

    CAS  Article  Google Scholar 

  23. 23

    B. Zheng, I. Yamashita, M. Uenuma, K. Iwahori, M. Kobayashi, and Y. Uraoka, Nanotechnology 21, 045305 (2010).

    CAS  Article  Google Scholar 

  24. 24

    E. Johnson, D. Cascio, M. R. Sawaya, M. Gingery, and I. Schröder, Structure 13, 637 (2005).

    CAS  Article  Google Scholar 

  25. 25

    X. Liu, W. Jin, and E. C. Theil, Proc. Natl. Acad. Sci. U.S.A. 100, 3653 (2003).

    CAS  Article  Google Scholar 

  26. 26

    F. Bonomi and S. Pagani, Eur. J. Biochem. 155, 295 (1986).

    CAS  Article  Google Scholar 

  27. 27

    S. Levi, A. Luzzago, G. Cesareni, A. Cozzi, F. Franceschinelli, A. Albertini, and P. Arosio, J. Biol. Chem. 263, 18086 (1988).

    CAS  Google Scholar 

  28. 28

    I. G. Macara, T. G. Hoy, and P. M. Harrison, Biochem. J. 126, 151 (1972).

    CAS  Google Scholar 

  29. 29

    M. J. Parker, M. A. Allen, B. Ramsay, M. T. Klem, M. Young, and T. Douglas, Chem. Mater. 20, 1541 (2008).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Chueh Loo Poh or Sierin Lim.

Additional information

This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Brukner Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte Ltd.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sana, B., Johnson, E., Sheah, K. et al. Iron-based ferritin nanocore as a contrast agent a). Biointerphases 5, FA48–FA52 (2010).

Download citation