Skip to main content

Journal for Biophysical Chemistry

Adhesion, proliferation, and gene expression profile of human umbilical vein endothelial cells cultured on bilayered polyelectrolyte coatings composed of glycosaminoglycans

Abstract

This study characterized human umbilical vein endothelial cell HUVEC adhesion, proliferation, and gene expression on bilayered polyelectrolyte coatings composed of an outermost layer of glycosaminoglycans hyaluronan, heparin, or chondroitin sulfate, with an underlying layer of poly-l-lysine or chitosan. The proportion of cells that adhered to the various polyelectrolyte coatings after 1 and 2 h incubations was quantified by the WST-8 assay. Interchanging poly-l-lysine with chitosan resulted in significant differences in cellular adhesion to the outermost glycosaminoglycan layer after 1 h, but these differences became insignificant after 2 h. The proliferation of HUVEC on the various bilayered polyelectrolyte coatings over 10 days was characterized using the WST-8 assay. Regardless of whether the underlying layer was poly-l-lysine or chitosan, HUVEC proliferation on the hyaluronan outermost layer was significantly less than on heparin or chondroitin sulfate. Additionally, it was observed that there was more proliferation with poly-l-lysine as the underlying layer, compared to chitosan. Subsequently, real-time polymerase chain reaction was used to analyze the expression of seven genes related to adhesion, migration, and endothelial function (VWF, VEGFR, VEGFA, endoglin, integrin-α5, ICAM1, and ICAM2 by HUVEC cultured on the various bilayered polyelectrolyte coatings for 3 days. With poly-l-lysine as the underlying layer, biologically significant differences greater than twofold in the expression of VWF, VEGFR, VEGFA, endoglin, and ICAM1 were observed among the three glycosaminoglycans. With chitosan as the underlying layer, all three glycosaminoglycans displayed biologically significant differences in the expression of VWF and VEGFR compared to the chitosan control. CT-HA displayed the highest level of expression of VWF, whereas expression levels of VEGFR were almost similar among the three glycosaminoglycans.

Reference

  1. 1

    Y. H. Miao and L. E. Helseth, Colloids Surf., B 66, 299 (2008).

    Article  CAS  Google Scholar 

  2. 2

    A. A. Galyean, R. W. Day, J. Malinowski, K. W. Kittredge, and M. C. Leopold, J. Colloid Interface Sci. 331, 532 (2009).

    Article  CAS  Google Scholar 

  3. 3

    M. Elzbieciak, S. Zapotoczny, P. Nowak, R. Krastev, M. Nowakowska, and P. Warszyński, Langmuir 25, 3255 (2009).

    Article  CAS  Google Scholar 

  4. 4

    M. Salomäki and J. Kankare, Biomacromolecules 10, 294 (2009).

    Article  Google Scholar 

  5. 5

    B. Thierry, F. M. Winnik, Y. Merhi, J. Silver, and M. Tabrizian, Biomacromolecules 4, 1564 2003.

    Article  CAS  Google Scholar 

  6. 6

    T. Inoue and K. Node, Jpn. Circ. J. 73, 615 (2009).

    CAS  Google Scholar 

  7. 7

    C. Tamburino, D. J. Angiolillo, P. Capranzano, M. Di Salvo, G. Ussia, A. La Manna, L. A. Guzman, A. R. Galassi, and T. A. Bass, Catheter. Cardiovasc. Interv. 73, 291 (2009).

    Article  Google Scholar 

  8. 8

    D. J. Tyrrell, S. Kilfeather, and C. P. Page, Trends Pharmacol. Sci. 16, 198 (1995).

    Article  CAS  Google Scholar 

  9. 9

    C. P. Lin, M. Böhnke, and J. Draeger, Ophthalmic Res. 22, 173 (1990).

    Article  CAS  Google Scholar 

  10. 10

    T. W. Wang, J. S. Sun, H. C. Wu, Y. H. Tsuang, W. H. Wang, and F. H. Lin, Biomaterials 27, 5689 (2006).

    Article  CAS  Google Scholar 

  11. 11

    D. Jiang, J. Liang, and P. W. Noble, Annu. Rev. Cell Dev. Biol. 23, 435 (2007).

    Article  CAS  Google Scholar 

  12. 12

    F. Cauda, V. Cauda, C. Fiori, B. Onida, and E. Garrone, J. Endourol 22, 465 (2008).

    Article  Google Scholar 

  13. 13

    C. Charbonneau, J. E. Gautrot, M. J. Hébert, X. X. Zhu, and S. Lerouge, Macromol. Biosci. 7, 746 (2007).

    Article  CAS  Google Scholar 

  14. 14

    L. Y. Huang and M. C. Yang, Colloids Surf., B 61, 43 (2008).

    Article  CAS  Google Scholar 

  15. 15

    B. Heublein, E. G. Evagorou, R. Rohde, S. Ohse, R. R. Meliss, S. Barlach, and A. Haverich, Int. J. Artif. Organs 25, 1166 (2002).

    CAS  Google Scholar 

  16. 16

    S. Verheye, C. P. Markou, M. Y. Salame, B. Wan, S. B. King III, K. A. Robinson, N. A. Chronos, and S. R. Hanson, Arterioscler., Thromb., Vasc. Biol. 20, 1168 (2000).

    Article  CAS  Google Scholar 

  17. 17

    S. Meng, Z. Liu, L. Shen, Z. Guo, L. L. Chou, W. Zhong, Q. Du, and J. Ge, Biomaterials 30, 2276 (2009).

    Article  CAS  Google Scholar 

  18. 18

    T. G. Kim, H. Lee, Y. Jang, and T. G. Park, Biomacromolecules 10, 1532 (2009).

    Article  CAS  Google Scholar 

  19. 19

    M. Ishiyama, Y. Miyazono, K. Sasamoto, Y. Ohkura, and K. Ueno, Talanta 44, 1299 (1997).

    Article  CAS  Google Scholar 

  20. 20

    R. Gilli, M. Kacuráková, M. Mathlouthi, L. Navarini, and S. Paoletti, Carbohydr. Res. 263, 315 (1994).

    Article  CAS  Google Scholar 

  21. 21

    C. Picart, Curr. Med. Chem. 15, 685 (2008).

    Article  CAS  Google Scholar 

  22. 22

    R. Barbucci, A. Magnani, and C. Roncolini, Clin. Mater. 8, 17 (1991).

    Article  CAS  Google Scholar 

  23. 23

    A. K. Bajpai and S. Bhanu, J. Mater. Sci.: Mater. Med. 18, 1613 (2007).

    Article  CAS  Google Scholar 

  24. 24

    T. Crouzier and C. Picart, Biomacromolecules 10, 433 (2009).

    Article  CAS  Google Scholar 

  25. 25

    D. A. Wang, S. Varghese, B. Sharma, I. Strehin, S. Fermanian, J. Gorham, D. H. Fairbrother, B. Cascio, and J. H. Elisseeff, Nature Mater. 6, 385 (2007).

    Article  CAS  Google Scholar 

  26. 26

    S. D. Bruck, J. Biomed. Mater. Res. 11, 1 (1977).

    Article  CAS  Google Scholar 

  27. 27

    Y. Takami, S. Yamane, K. Makinouchi, Y. Niimi, A. Sueoka, and Y. Nosé, Artif. Organs 22, 753 (1998).

    Article  CAS  Google Scholar 

  28. 28

    P. M. Consigny, J. Long Term Eff. Med. Implants 10, 79 (2000).

    CAS  Google Scholar 

  29. 29

    L. Bordenave, M. Rémy-Zolghadri, P. Fernandez, R. Bareille, and D. Midy, Endothelium 6, 267 (1999).

    Article  CAS  Google Scholar 

  30. 30

    F. Gao, Y. Liu, Y. He, C. Yang, Y. Wang, X. Shi, and G. Wei, Matrix Biol. 29, 107 (2010).

    Article  CAS  Google Scholar 

  31. 31

    Y. Matsumoto, K. Arai, H. Momose, and Y. Kuroyanagi, J. Biomater. Sci., Polym. Ed. 20, 993 (2009).

    Article  CAS  Google Scholar 

  32. 32

    G. Favia, M. A. Mariggio, F. Maiorano, A. Cassano, S. Capodiferro, and D. Ribatti, J. Biol. Regul. Homeost. Agents 22, 109 (2008).

    CAS  Google Scholar 

  33. 33

    M. Halici, S. Karaoglu, O. Canoz, S. Kabak, and A. Baktir, Knee Surg. Sports Traumatol. Arthrosc 12, 562 (2004).

    Article  Google Scholar 

  34. 34

    G. Cao, R. C. Savani, M. Fehrenbach, C. Lyons, L. Zhang, G. Coukos, and H. M. Delisser, Am. J. Pathol. 169, 325 (2006).

    Article  CAS  Google Scholar 

  35. 35

    F. Gao, C. X. Yang, W. Mo, Y. W. Liu, and Y. Q. He, Clin. Invest. Med. 31, E106 (2008).

    CAS  Google Scholar 

  36. 36

    N. Ferrara, H. P. Gerber, and J. LeCouter, Nat. Med. 9, 669 (2003).

    Article  CAS  Google Scholar 

  37. 37

    J. Schlessinger, A. N. Plotnikov, O. A. Ibrahimi, A. V. Eliseenkova, B. K. Yeh, A. Yayon, R. J. Linhardt, and M. Mohammadi, Mol. Cell 6, 743 (2000).

    Article  CAS  Google Scholar 

  38. 38

    C. Yao, P. Prével, S. Koch, P. Schenck, E. M. Noah, N. Pallua, and G. Steffens, Cells Tissues Organs 178, 189 (2004).

    Article  CAS  Google Scholar 

  39. 39

    K. W. Lee et al., Transplant. Proc. 36, 2464 (2004).

    Article  CAS  Google Scholar 

  40. 40

    M. Klagsbrun, Semin Cancer Biol. 3, 81 (1992).

    CAS  Google Scholar 

  41. 41

    M. M. Rasulov, M. V. Velikaia, A. G. Zabozlaev, I. G. Kuznetsov, and M. G. Voronkov, Biull. Eksp. Biol. Med. 116, 460 (1993).

    CAS  Google Scholar 

  42. 42

    T. Magoshi and T. Matsuda, Biomacromolecules 3, 976 (2002).

    Article  CAS  Google Scholar 

  43. 43

    I. A. Relou, C. A. Damen, D. W. van der Schaft, G. Groenewegen, and A. W. Griffioen, Tissue Cell 30, 525 (1998).

    Article  CAS  Google Scholar 

  44. 44

    Y. Liu, T. He, and C. Gao, Colloids Surf., B 46, 117 (2005).

    Article  CAS  Google Scholar 

  45. 45

    M. Matsusaki, H. Sakaguchi, T. Serizawa, and M. Akashi, J. Biomater. Sci., Polym. Ed. 18, 775 (2007).

    Article  CAS  Google Scholar 

  46. 46

    V. Moby, C. Boura, H. Kerdjoudj, J. C. Voegel, L. Marchal, D. Dumas, P. Schaaf, J.-F. Stoltz, and P. Menu, Biomacromolecules 8, 2156 (2007).

    Article  CAS  Google Scholar 

  47. 47

    C. Boura, S. Muller, J. C. Voegel, P. Schaaf, J. F. Stoltz, and P. Menu, Biomed. Mater. Eng. 16, S115 (2006).

    Google Scholar 

  48. 48

    C. Picart, P. Lavalle, P. Hubert, F. J. Cuisinier, G. Decher, P. Schaaf, and J. C. Voegel, Langmuir 17, 7414 (2001).

    Article  CAS  Google Scholar 

  49. 49

    C. Porcel, P. Lavalle, G. Decher, B. Senger, J. C. Voegel, and P. Schaaf, Langmuir 23, 1898 (2007).

    Article  CAS  Google Scholar 

  50. 50

    D. Collin, P. Lavalle, J. M. Garza, J. C. Voegel, P. Schaaf, and P. Martinoty, Macromolecules 37, 10195 (2004).

    Article  CAS  Google Scholar 

  51. 51

    M. Nakamura, M. Hikida, T. Nakano, S. Ito, T. Hamano, and S. Kinoshita, Cornea 12, 433 (1993).

    Article  CAS  Google Scholar 

  52. 52

    E. A. Tsvetkova, Biofizika 50, 341 (2005).

    CAS  Google Scholar 

  53. 53

    B. Ascher, M. Cerceau, M. Baspeyras, and B. Rossi, Ann. Chir. Plast. Esthet. 49, 465 (2004).

    Article  CAS  Google Scholar 

  54. 54

    C. A. Reinhart-King, M. Dembo, and D. A. Hammer, Biophys. J. 95, 6044 (2008).

    Article  CAS  Google Scholar 

  55. 55

    N. Yamamura, R. Sudo, M. Ikeda, and K. Tanishita, Tissue Eng. 13, 1443 (2007).

    Article  CAS  Google Scholar 

  56. 56

    L. Kocgozlu, P. Lavalle, G. Koenig, B. Senger, Y. Haikel, P. Schaaf, J. C. Voegel, H. Tenenbaum, and D. Vautier, J. Cell. Sci. 123, 29 (2010).

    Article  CAS  Google Scholar 

  57. 57

    H. Kerdjoudj et al., J. Am. Coll. Cardiol. 52, 1589 (2008).

    Article  CAS  Google Scholar 

  58. 58

    C. Boura, S. Muller, D. Vautier, D. Dumas, P. Schaaf, J. Claude Voegel, J. François Stoltz, and P. Menu, Biomaterials 26, 4568 (2005).

    Article  CAS  Google Scholar 

  59. 59

    N. Salmon, E. Paternotte, V. Decot, J. F. Stoltz, P. Menu, and P. Labrude, Biomed. Mater. Eng. 19, 349 (2009).

    CAS  Google Scholar 

  60. 60

    S. F. De Meyer, B. De Maeyer, H. Deckmyn, and K. Vanhoorelbeke, Cardiovasc. Hematol. Disord. Drug Targets 9, 9 (2009).

    Article  Google Scholar 

  61. 61

    M. Franchini and P. M. Mannucci, Semin Thromb Hemost 34, 663 (2008).

    Article  CAS  Google Scholar 

  62. 62

    C. V. Denis, Int. J. Hematol. 75, 3 (2002).

    Article  CAS  Google Scholar 

  63. 63

    S. Ylä-Herttuala, Biochem. Soc. Trans. 37, 1198 (2009).

    Article  Google Scholar 

  64. 64

    A. van de Stolpe and P. T. van der Saag, J. Mol. Med. 74, 13 (1996).

    Article  Google Scholar 

  65. 65

    A. Genasetti et al., Connect. Tissue Res. 49, 120 (2008).

    Article  CAS  Google Scholar 

  66. 66

    E. L. Pardue, S. Ibrahim, and A. Ramamurthi, Organogenesis 4, 203 (2008).

    Article  Google Scholar 

  67. 67

    D. M. Smadja, I. Bièche, D. Helley, I. Laurendeau, G. Simonin, L. Muller, M. Aiach, and P. Gaussem, J. Cell. Mol. Med. 11, 1149 (2007).

    Article  CAS  Google Scholar 

  68. 68

    E. Fonsatti, L. Sigalotti, P. Arslan, M. Altomonte, and M. Maio, Curr. Cancer Drug Targets 3, 427 (2003).

    Article  CAS  Google Scholar 

  69. 69

    K. Norrby and J. Sörbo, Int. J. Exp. Pathol. 73, 147 (1992).

    CAS  Google Scholar 

  70. 70

    S. Pacini, M. Gulisano, S. Vannucchi, and M. Ruggiero, Biochem. Biophys. Res. Commun. 290, 820 (2002).

    Article  CAS  Google Scholar 

  71. 71

    Z. Liu et al., J. Cell. Sci. 122, 3294 (2009).

    Article  CAS  Google Scholar 

  72. 72

    I. Melero et al., Cancer Res. 62, 3167 (2002).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Boon Chin Heng.

Additional information

This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering Nanyang Technological University, and Analytical Pte. Ltd.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heng, B.C., Bezerra, P.P., Meng, Q.R. et al. Adhesion, proliferation, and gene expression profile of human umbilical vein endothelial cells cultured on bilayered polyelectrolyte coatings composed of glycosaminoglycans. Biointerphases 5, FA53–FA62 (2010). https://doi.org/10.1116/1.3483218

Download citation