Skip to main content

Journal for Biophysical Chemistry

Effect of contact angle hysteresis on the removal of the sporelings of the green alga Ulva from the fouling-release coatings synthesized from polyolefin polymers

Abstract

Wettability is one of the surface characteristics that is controlled by the chemical composition and roughness of a surface. A number of investigations have explored the relationship between water contact angle and surface free energy of polymeric coatings with the settlement (attachment) and adhesion strength of various marine organisms. However, the relationship between the contact angle hysteresis and fouling-release property is generally overlooked. In the present work, coatings were prepared by using commercial hydrophobic homopolymer and copolymer polyolefins, which have nearly the same surface free energy. The effects of contact angle hysteresis, wetting hysteresis, and surface free energy on the fouling-release properties for sporelings of the green alga Ulva from substrates were then examined quantitatively under a defined shear stress in a water channel. The ease of removal of sporelings under shear stress from the polymer surfaces was in the order of PP>HDPE>PPPE>EVA-12 and strongly and positively correlated with contact angle and wetting hysteresis; i.e., the higher the hysteresis, the greater the removal.

References

  1. 1

    M. P. Schultz, Biofouling 23, 331 (2007).

    Article  Google Scholar 

  2. 2

    R. F. Brady and I. L. Singer, Biofouling 15, 73 (2000).

    CAS  Article  Google Scholar 

  3. 3

    M. E. Callow, J. A. Callow, L. K. Ista, S. E. Coleman, A. C. Nolasco, and G. P. Lopez, Appl. Environ. Microbiol. 66, 3249 (2000).

    CAS  Article  Google Scholar 

  4. 4

    J. Genzer and J. Groenewold, Soft Matter 2, 310 (2006).

    CAS  Article  Google Scholar 

  5. 5

    J. F. Schumacher, M. L. Carman, T. G. Estes, A. W. Feinberg, L. H. Wilson, M. E. Callow, J. A. Callow, J. A. Finlay, and A. B. Brennan, Biofouling 23, 55 (2007).

    CAS  Article  Google Scholar 

  6. 6

    J. Genzer and K. Efimenko, Biofouling 22, 339 (2006).

    CAS  Article  Google Scholar 

  7. 7

    P. Roach, N. J. Shirtcliffe, and M. I. Newton, Soft Matter 4, 224 (2008).

    CAS  Article  Google Scholar 

  8. 8

    K. Koch, B. Bhushan, and W. Barthlott, Soft Matter 4, 1943 (2008).

    CAS  Article  Google Scholar 

  9. 9

    A. V. Bers and M. Wahl, Biofouling 20, 43 (2004).

    CAS  Article  Google Scholar 

  10. 10

    A. J. Scardino, J. Guenther, and R. de Nys, Biofouling 24, 45 (2008).

    CAS  Article  Google Scholar 

  11. 11

    A. J. Scardino, D. Hudleston, Z. Peng, N. A. Paul, and R. de Nys, Biofouling 25, 83 (2009).

    CAS  Article  Google Scholar 

  12. 12

    A. V. Bers et al., Biofouling 26, 367 (2010).

    Article  Google Scholar 

  13. 13

    J. Guenther, G. Walker-Smith, A. Waren, and R. de Nys, Biofouling 23, 413 (2007).

    CAS  Article  Google Scholar 

  14. 14

    J. Guenther and R. de Nys, Biofouling 23, 419 (2007).

    Article  Google Scholar 

  15. 15

    R. F. Brady, Prog. Org. Coat. 35, 31 (1999).

    CAS  Article  Google Scholar 

  16. 16

    R. F. Brady and C. L. Aronson, Biofouling 19, 59 (2003).

    CAS  Article  Google Scholar 

  17. 17

    L. Hoipkemeier-Wilson, J. F. Schumacher, M. L. Carman, A. L. Gibson, A. W. Feinberg, M. E. Callow, J. A. Finlay, J. A. Callow, and A. B. Brennan, Biofouling 20, 53 (2004).

    CAS  Article  Google Scholar 

  18. 18

    J. A. Callow, M. E. Callow, L. K. Ista, G. Lopez, and M. K. Chaudhury, J. R. Soc., Interface 2, 319 (2005).

    CAS  Article  Google Scholar 

  19. 19

    M. L. Carman, T. G. Estes, A. W. Feinberg, J. F. Schumacher, W. Wilkerson, L. H. Wilson, M. E. Callow, J. A. Callow, and A. B. Brennan, Biofouling 22, 11 (2006).

    CAS  Article  Google Scholar 

  20. 20

    P. Majumdar et al., Biofouling 24, 185 (2008).

    CAS  Article  Google Scholar 

  21. 21

    A. J. Scardino, H. Zhang, D. J. Cookson, R. N. Lamb, and R. de Nys, Biofouling 25, 757 (2009).

    CAS  Article  Google Scholar 

  22. 22

    R. Holland, T. M. Dugdale, R. Wetherbee, A. B. Brennan, J. A. Finlay, J. A. Callow, and M. E. Callow, Biofouling 20, 323 (2004).

    CAS  Article  Google Scholar 

  23. 23

    M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow, and J. A. Callow, Biofouling 21, 41 (2005).

    CAS  Article  Google Scholar 

  24. 24

    J. C. Yarbrough, J. P. Rolland, J. M. DeSimone, M. E. Callow, J. A. Finlay, and J. A. Callow, Macromolecules 39, 2521 (2006).

    CAS  Article  Google Scholar 

  25. 25

    A. Beigbeder, P. Degee, S. L. Conlan, R. J. Mutton, A. S. Clare, M. E. Pettitt, M. E. Callow, J. A. Callow, and P. Dubois, Biofouling 24, 291 (2008).

    Article  Google Scholar 

  26. 26

    C. S. Gudipati, J. A. Finlay, J. A. Callow, M. E. Callow, and K. L. Wooley, Langmuir 21, 3044 (2005).

    CAS  Article  Google Scholar 

  27. 27

    S. Krishnan et al., Biomacromolecules 7, 1449 (2006).

    CAS  Article  Google Scholar 

  28. 28

    R. J. Good, J. Am. Chem. Soc. 74, 5041 (1952).

    CAS  Article  Google Scholar 

  29. 29

    Y. L. Chen, C. A. Helm, and J. N. Israelachvili, J. Phys. Chem. 95, 10736 (1991).

    CAS  Article  Google Scholar 

  30. 30

    H. Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces (Blackwell, Oxford, UK, 2006), Chap. 9, pp. 308–337.

    Google Scholar 

  31. 31

    H. Y. Erbil, G. McHale, S. M. Rowan, and M. I. Newton, Langmuir 15, 7378 (1999).

    CAS  Article  Google Scholar 

  32. 32

    H. Y. Erbil, J. Phys. Chem. B 102, 9234 (1998).

    CAS  Article  Google Scholar 

  33. 33

    D. L. Schmidt, R. F. Brady, K. Lam, D. C. Schmidt, and M. K. Chaudhury, Langmuir 20, 2830 (2004).

    CAS  Article  Google Scholar 

  34. 34

    M. P. Schultz, J. A. Finlay, M. E. Callow, and J. A. Callow, Biofouling 15, 243 (2000).

    Article  Google Scholar 

  35. 35

    H. Y. Erbil, A. L. Demirel, Y. Avci, and O. Mert, Science 299, 1377 (2003).

    CAS  Article  Google Scholar 

  36. 36

    O. Mellbring, S. K. Øiseth, A. Krozer, J. Lausmaa, and T. Hjertberg, Macromolecules 34, 7496 (2001).

    CAS  Article  Google Scholar 

  37. 37

    A. M. Henderson, IEEE Electr. Insul. Mag. (USA) 9, 30 (1993).

    Article  Google Scholar 

  38. 38

    H. Y. Erbil, J. Appl. Polym. Sci. 33, 1397 (1987).

    CAS  Article  Google Scholar 

  39. 39

    M. Brogly, M. Nardin, and J. Schultz, J. Appl. Polym. Sci. 64, 1903 (1997).

    CAS  Article  Google Scholar 

  40. 40

    J. Kim, J. Wang, H. J. Kang, and F. Talke, Polym. Eng. Sci. 48, 277 (2008).

    Article  Google Scholar 

  41. 41

    C. J. Van Oss, M. K. Chaudhury, and R. J. Good, Chem. Rev. 88, 927 (1988).

    Article  Google Scholar 

  42. 42

    R. J. Good, in Contact Angle Wettability and Adhesion, edited by K. L. Mittal (VSP, Utrecht, 1993), pp. 3–36.

    Google Scholar 

  43. 43

    J. A. Finlay, B. R. Fletcher, M. E. Callow, and J. A. Callow, Biofouling 24, 219 (2008).

    Article  Google Scholar 

  44. 44

    M. K. Chaudhury and M. J. Owen, J. Phys. Chem. 97, 5722 (1993).

    CAS  Article  Google Scholar 

  45. 45

    C. W. Extrand and Y. Kumagai, J. Colloid Interface Sci. 191, 378 (1997).

    CAS  Article  Google Scholar 

  46. 46

    D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).

    CAS  Article  Google Scholar 

  47. 47

    N. S. Lee, J. A. Callow, M. E. Callow, J. A. Finlay, and W. P. Weber, J. Appl. Polym. Sci. 102, 751 (2006).

    CAS  Article  Google Scholar 

  48. 48

    C. G. L. Furmidge, J. Colloid Sci. 17, 309 (1962).

    CAS  Article  Google Scholar 

  49. 49

    L. Gao and T. J. McCarthy, Langmuir 23, 3762 (2007).

    CAS  Article  Google Scholar 

  50. 50

    L. Gao and T. J. McCarthy, Langmuir 24, 9183 (2008).

    CAS  Article  Google Scholar 

  51. 51

    C. W. Yang, P. F. Hao, and F. He, Chin. Sci. Bull. 54, 727 (2009).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ucar, I.O., Cansoy, C.E., Erbil, H.Y. et al. Effect of contact angle hysteresis on the removal of the sporelings of the green alga Ulva from the fouling-release coatings synthesized from polyolefin polymers. Biointerphases 5, 75–84 (2010). https://doi.org/10.1116/1.3483467

Download citation