Skip to main content

Journal for Biophysical Chemistry

Bio-inspired track-walking molecular motors (Perspective)

Abstract

The emerging field of artificial track-walking molecular motors is reviewed. The author attempted to clarify the scientific and technological challenges that face the field. A comprehensive mechanistic diagram for molecular walkers was introduced, thereby the directions and possible routes for future development were suggested. a) This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte Ltd.

Reference

  1. 1

    M. Schliwa and G. Woehlke, Nature (London) 422, 759 (2003).

    CAS  Article  Google Scholar 

  2. 2

    R. D. Vale, Cell 112, 467 (2003).

    CAS  Article  Google Scholar 

  3. 3

    R. D. Vale and R. A. Milligan, Science 288, 88 (2000).

    CAS  Article  Google Scholar 

  4. 4

    W. Junge, H. Sielaff, and S. Engelbrecht, Nature (London) 459, 364 (2009).

    CAS  Article  Google Scholar 

  5. 5

    H. Berg, Phys. Today 53(1), 24 (2000).

    CAS  Article  Google Scholar 

  6. 6

    L. Wordeman, Curr. Opin. Cell Biol. 17, 82 (2005).

    CAS  Article  Google Scholar 

  7. 7

    F. M. Raymo and J. F. Stoddart, in Molecular Switches, edited by B. L. Feringa (Wiley-VCH, Weinheim, 2001), pp. 219–248.

    Chapter  Google Scholar 

  8. 8

    E. R. Kay, D. Leigh, and F. Zerbetto, Angew. Chem., Int. Ed. 47, 72 (2007).

    Article  Google Scholar 

  9. 9

    W. B. Sherman and N. C. Seeman, Nano Lett. 4, 1203 (2004).

    CAS  Article  Google Scholar 

  10. 10

    P. Yin, H. Yan, X. G. Daniell, A. J. Tuerberfield, and J. H. Reif, Angew. Chem., Int. Ed. 43, 4906 (2004).

    CAS  Article  Google Scholar 

  11. 11

    J. S. Shin and N. A. Pierce, J. Am. Chem. Soc. 126, 10834 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Y. Tian, Y. He, Y. Chen, P. Yin, and C. Mao, Angew. Chem., Int. Ed. 44, 4355 (2005).

    CAS  Article  Google Scholar 

  13. 13

    J. Bath, S. J. Green, and A. J. Turberfield, Angew. Chem., Int. Ed. 44, 4358 (2005).

    CAS  Article  Google Scholar 

  14. 14

    S. J. Green, J. Bath, and A. J. Turberfield, Phys. Rev. Lett. 101, 238101 (2008).

    CAS  Article  Google Scholar 

  15. 15

    P. Yin, H. M. T. Choi, C. R. Calvert, and N. A. Pierce, Nature (London) 451, 318 (2008).

    CAS  Article  Google Scholar 

  16. 16

    T. Omabegho, R. Sha, and N. C. Seeman, Science 324, 67 (2009).

    CAS  Article  Google Scholar 

  17. 17

    H. Gu, J. Chao, S. J. Xiao, and N. C. Seeman, Nature (London) 465, 202 (2010).

    CAS  Article  Google Scholar 

  18. 18

    K. Lund et al., Nature (London) 465, 206 (2010).

    CAS  Article  Google Scholar 

  19. 19

    M. von Delius, E. M. Geertsema, and D. A. Leigh, Nat. Chem. 2, 96 (2010).

    Article  Google Scholar 

  20. 20

    R. P. Feynman, in Miniaturization, edited by H. D. Gilbert (Reinhold, New York, 1961).

    Google Scholar 

  21. 21

    R. D. Vale, T. S. Reese, and M. P. Sheetz, Cell 42, 39 (1985).

    CAS  Article  Google Scholar 

  22. 22

    H. Miki, Y. Okada, and N. Hirokawa, Trends Cell Biol. 15, 467 (2005).

    CAS  Article  Google Scholar 

  23. 23

    K. Visscher, M. J. Schnitzer, and S. M. Block, Nature (London) 400, 184 (1999).

    CAS  Article  Google Scholar 

  24. 24

    N. C. Seeman, Sci. Am. 290, 64 (2004).

    CAS  Article  Google Scholar 

  25. 25

    A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, Science 303, 676 (2004).

    CAS  Article  Google Scholar 

  26. 26

    M. Nishiyama, H. Higuchi, and T. Yanagida, Nat. Cell Biol. 4, 790 (2002).

    CAS  Article  Google Scholar 

  27. 27

    N. J. Carter and R. A. Cross, Nature (London) 435, 308 (2005).

    CAS  Article  Google Scholar 

  28. 28

    M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).

    Article  Google Scholar 

  29. 29

    R. D. Astumian, Science 276, 917 (1997).

    CAS  Article  Google Scholar 

  30. 30

    F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269 (1997).

    Article  Google Scholar 

  31. 31

    P. Reimann, Phys. Rep. 361, 57 (2002).

    CAS  Article  Google Scholar 

  32. 32

    R. D. Astumian and I. Derenyi, Biophys. J. 77, 993 (1999).

    CAS  Article  Google Scholar 

  33. 33

    R. Kanada and K. Sasaki, Phys. Rev. E 67, 061917 (2003).

    Article  Google Scholar 

  34. 34

    D. Dan, A. M. Jayannavar, and G. I. Menon, Physica A 318, 40 (2003).

    Article  Google Scholar 

  35. 35

    M. T. Downton, M. J. Zuckermann, E. M. Craig, M. Plischke, and H. Linke, Phys. Rev. E 73, 011909 (2006).

    Article  Google Scholar 

  36. 36

    J. Munarriz, J. J. Mazo, and F. Falo, Phys. Rev. E 77, 031915 (2008).

    CAS  Article  Google Scholar 

  37. 37

    M. Porto, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 84, 6058 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Z. S. Wang, Phys. Rev. E 70, 031903 (2004).

    Article  Google Scholar 

  39. 39

    D. Li, D. Fan, and Z. S. Wang, J. Chem. Phys. 126, 245105 (2007).

    Article  Google Scholar 

  40. 40

    D. Li, D. G. Fan, W. W. Zheng, Y. K. Le, and Z. S. Wang, Chem. Phys. 352, 235 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Z. S. Wang, M. Feng, W. W. Zheng, and D. G. Fan, Biophys. J. 93, 3363 (2007).

    CAS  Article  Google Scholar 

  42. 42

    D. G. Fan, W. W. Zheng, R. Hou, F. Li, and Z. S. Wang, Biochemistry 47, 4733 (2008).

    CAS  Article  Google Scholar 

  43. 43

    W. W. Zheng, D. Fan, M. Feng, and Z. S. Wang, Phys. Biol. 6, 036002 (2009).

    Article  Google Scholar 

  44. 44

    Y. Xu and Z. S. Wang, J. Chem. Phys. 131, 245104 (2009).

    Article  Google Scholar 

  45. 45

    Z. S. Wang, Proc. Natl. Acad. Sci. U.S.A. 104, 17921 (2007).

    CAS  Article  Google Scholar 

  46. 46

    A. Efremov and Z. S. Wang (unpublished).

  47. 47

    S. Rahav, J. Horowitz, and C. Jarzynski, Phys. Rev. Lett. 101, 140602 (2008).

    Article  Google Scholar 

  48. 48

    V. Y. Chernyak and N. A. Sinitsyn, Phys. Rev. Lett. 101, 160601 (2008).

    CAS  Article  Google Scholar 

  49. 49

    R. D. Astumian, BioSystems 93, 8 (2008).

    Article  Google Scholar 

  50. 50

    P. Xie, Phys. Rev. E 79, 011920 (2009).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Z. Bio-inspired track-walking molecular motors (Perspective). Biointerphases 5, FA63–FA68 (2010). https://doi.org/10.1116/1.3484906

Download citation