Skip to main content

Journal for Biophysical Chemistry

Cationized albumin-biocoatings for the immobilization of lipid vesicles

Abstract

Tethered lipid membranes or immobilized lipid vesicles are frequently used as biomimetic systems. In this article, the authors presented a suitable method for efficient immobilization of lipid vesicles onto a broad range of surfaces, enabling analysis by quantitative methods even under rigid, mechanical conditions—bare surfaces such as hydrophilic glass surfaces as well as hydrophobic polymer slides or metal surfaces such as gold. The immobilization of vesicles was based on the electrostatic interaction of zwitterionic or negatively charged lipid vesicles with two types of cationic chemically modified bovine serum albumin (cBSA) blood plasma proteins (cBSA-113 and cBSA-147). Quantitative analysis of protein adsorption was performed as the cBSA coatings were characterized by atomic force microscopy, surface zeta potential measurement, fluorescence microscopy, and surface plasmon spectroscopy, revealing a maximal surface coverage 270–280 ng/cm2 for 0.02 mg/ml cBSA on gold. Small unilamellar vesicles as well as giant unilamellar vesicles (GUVs) were readily immobilized (15 min) on cBSA coated surfaces. GUVs with 5–10 mol% negatively charged 1,2,-dipalmitoyl-sn-glycero-3-phosphoglycerol remained stable in liquid for at least 5 weeks.

Reference

  1. D. M. Rosenbaum, S. G. F. Rasmussen, and B. K. Kobilka, Nature (London) 459, 356 (2009).

    Article  CAS  Google Scholar 

  2. M. Majdi and H.-S. V. Chen, Recep. Ligand Channel Res. 2, 59 (2009).

    CAS  Google Scholar 

  3. P. Walde and S. Ichikawa, Biomol. Eng. 18, 143 (2001).

    Article  CAS  Google Scholar 

  4. R. Labas, F. Beilvert, B. Barteau, S. David, R. Chevre, and B. Pitard, Genetica (Dordrecht, Neth.) 138, 153 (2009).

    Google Scholar 

  5. G. Cevc, Adv. Drug Delivery Rev. 56, 675 (2004).

    Article  CAS  Google Scholar 

  6. L. F. Zhang, L. Hong, Y. Yu, S. C. Bae, and S. Granick, J. Am. Chem. Soc. 128, 9026 (2006).

    Article  CAS  Google Scholar 

  7. M. L. Moraes, M. S. Baptista, R. Itri, V. Zucolotto, and O. N. Oliveira, Jr., Mater. Sci. Eng., C 28, 467 (2008).

    Article  CAS  Google Scholar 

  8. P. Lundahl and Q. Yang, J. Chromatogr. 544, 283 (1991).

    Article  CAS  Google Scholar 

  9. L. S. Jung, J. S. Shumaker-Parry, C. T. Campbell, S. S. Yee, and M. H. Gelb, J. Am. Chem. Soc. 122, 4177 (2000).

    Article  CAS  Google Scholar 

  10. L. Masson, A. Mazza, and R. Brousseau, Anal. Biochem. 218, 405 (1994).

    Article  CAS  Google Scholar 

  11. S. Svedhem, I. Pfeiffer, C. Larsson, C. Wingren, C. Borrebaeck, and F. Hook, ChemBioChem 4, 339 (2003).

    Article  CAS  Google Scholar 

  12. C. Yoshina-Ishii and S. G. Boxer, J. Am. Chem. Soc. 125, 3696 (2003).

    Article  CAS  Google Scholar 

  13. T. Stora, Z. Dienes, H. Vogel, and C. Duschl, Langmuir 16, 5471 (2000).

    Article  CAS  Google Scholar 

  14. S. Schuy, B. Treutlein, A. Pietuch, and A. Janshoff, Small 4, 970 (2008).

    Article  CAS  Google Scholar 

  15. G. Klenkar, B. Brian, T. Ederth, G. Stengel, F. Hook, J. Piehler, and B. Liedberg, BioInterphases 3, 29 (2008).

    Article  Google Scholar 

  16. S. M. Christensen and D. Stamou, Soft Matter 3, 828 (2007).

    Article  CAS  Google Scholar 

  17. D. Merkle, N. Kahya, and P. Schwille, ChemBioChem 9, 2673 (2008).

    Article  CAS  Google Scholar 

  18. B. G. Lorz, A. S. Smith, C. Gege, and E. Sackmann, Langmuir 23, 12293 (2007).

    Article  CAS  Google Scholar 

  19. D. Volodkin, V. Ball, P. Schaaf, J. C. Voegel, and H. Mohwald, Biochim. Biophys. Acta 1768, 280 (2007).

    Article  CAS  Google Scholar 

  20. A. L. Bernard, M. A. Guedeau-Boudeville, L. Jullien, and J. M. di Meglio, Langmuir 16, 6809 (2000).

    Article  CAS  Google Scholar 

  21. J. O. Rädler, T. J. Feder, H. H. Strey, and E. Sackmann, Phys. Rev. E 51, 4526 (1995).

    Article  Google Scholar 

  22. C. H. Reccius and P. Fromherz, Langmuir 20, 11175 (2004).

    Article  CAS  Google Scholar 

  23. X. Liu, R. Zhao, Y. Zhang, X. Jiang, J. Yue, P. Jiang, and Z. Zhang, Biochim. Biophys. Acta 1770, 1620 (2007).

    Article  CAS  Google Scholar 

  24. L. Zöphel, K. Eisele, R. Gropeanu, A. Rouhanipour, K. Koynov, I. Lieberwirth, K. Müllen, and T. Weil, Macromol. Chem. Phys. 211, 146 (2010).

    Article  Google Scholar 

  25. J. F. Ng, S. Jaenicke, K. Eisele, J. Dorn, and T. Weil, “Cationized albumin-biocoatings for the efficient chiral reduction in a microchannel reactor,” BioInterphases (submitted).

  26. M. I. Angelova and D. S. Dimitrov, Faraday Discuss. Chem. Soc. 81, 303 (1986).

    Article  CAS  Google Scholar 

  27. R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, J. Phys.: Condens. Matter 18, S1151 (2006).

    Article  CAS  Google Scholar 

  28. E. K. Sinner, U. Reuning, F. N. Kok, B. Sacca, L. Moroder, W. Knoll, and D. Oesterhelt, Anal. Biochem. 333, 216 (2004).

    Article  CAS  Google Scholar 

  29. A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, J. Colloid Interface Sci. 261, 402 (2003).

    Article  CAS  Google Scholar 

  30. Y. L. Jeyachandran, J. A. Mielczarski, E. Mielczarski, and B. Rai, J. Colloid Interface Sci. 341, 136 (2010).

    Article  CAS  Google Scholar 

  31. N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, Colloid Polym. Sci. 264, 903 (1986).

    Article  CAS  Google Scholar 

  32. W. Grant and R. Dehl, Adhesion and Adsorption of Polymers (Plenum Press, New York, 1980), p. 827.

    Google Scholar 

  33. T. W. Xu, R. Q. Fu, and L. F. Yan, J. Colloid Interface Sci. 262, 342 (2003).

    Article  CAS  Google Scholar 

  34. K. Rezwan, L. P. Meier, M. Rezwan, J. Voros, M. Textor, and L. J. Gauckler, Langmuir 20, 10055 (2004).

    Article  CAS  Google Scholar 

  35. H. Larsericsdotter, S. Oscarsson, and J. Buijs, J. Colloid Interface Sci. 289, 26 (2005).

    Article  CAS  Google Scholar 

  36. K. Eisele et al., Biomaterials 31, 8789 (2010).

    Article  CAS  Google Scholar 

  37. See supplementary material at E-BJIOBN-5-011003 for additional information about the zeta potential of adsorbed BSA and cBSA on glass demonstrating that the positive charge effect of cationized BSA is even stronger in water than in DPBS (Fig. 8). Fluorescence images of fluorescent labelled cBSA and the corresponding phase contrast images of adsorbed GUVs showed that the cBSA layer is intact after vesicle immobilization (Fig. 9). Long time stability of immobilized GUVs (DOPC/DPPG) on cBSA-113 was observed for GUVs with 5–10 mol% negatively charged DPPG [Figs. 10(a) and 10(b)], whereas pure DOPC vesicles were less stable [Fig. 10(a)]. Increasing the concentration of negatively charged DPPG (0, 5, 10, 20, 30%) in GUVs also resulted in stronger surface interaction with the positively charged cBSA-113 and vesicle fusion. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.

  38. S. H. Behrens and D. G. Grier, J. Chem. Phys. 115, 6716 (2001).

    Article  CAS  Google Scholar 

  39. V. Kahl, ibidi GmbH, Martinsried, Germany (private communication).

  40. S. Brantzen, F. Volklein, W. Knoll, and B. Menges, Sens. Actuators, A 135, 492 (2007).

    Article  Google Scholar 

  41. G. T. Hermanson, Bioconjugate Techniques (Academic, New York, 1996), Vol. 27, p. 785.

    Google Scholar 

  42. M. Käsbauer, M. Junglas, and T. M. Bayerl, Biophys. J. 76, 2600 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of an In Focus section on Biointerface Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte. Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritz, S., Eisele, K., Dorn, J. et al. Cationized albumin-biocoatings for the immobilization of lipid vesicles. Biointerphases 5, FA78–FA87 (2010). https://doi.org/10.1116/1.3494039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3494039