Skip to main content

Journal for Biophysical Chemistry

Kinetics of leucine-lysine peptide adsorption and desorption at -CH3 and -COOH terminated alkylthiolate monolayers


The kinetics of adsorption and desorption of two highly asymmetrical model peptides were studied at methyl- and carboxylic acid-terminated alkylthiolate self-assembled monolayer (SAM) surfaces on gold. The model peptides were leucine-lysine (LK), α-helical (LKα14), and β-strand (LKβ15) peptides that have a well-defined secondary structure with the leucines localized on one side and the lysines on the other side. These secondary structures were previously shown to be maintained after adsorption and to control LK peptide orientation on these surfaces. The kinetics of peptide adsorption were analyzed by surface plasmon resonance as a function of peptide solution concentrations at pH 7.4. Peptide desorption was measured by rinsing with a buffer at various times along the adsorption curve. Both peptides had a saturation coverage of approximately 1 ML (monolayer) on the carboxyl SAM. Both peptides exhibited mostly irreversible binding on both surfaces, but the LKα14 peptide showed some limited reversible binding. Reversibly bound peptides could be in the second adlayer interacting only with peptides in the first layer or peptides interacting with a partially covered adsorption site and therefore not able to fully bind to the SAM surface. The near complete lack of reversible binding for LKβ15 is possibly due to strong peptide-peptide hydrogen bonding in β-sheet structures within the adsorbed layer. For a given dose of either peptide, much less peptide adsorbed on the methyl SAMs. The adsorption rate of irreversibly bound LKα14 on carboxylic acid SAMs was first-order with respect to solution concentration. Both peptides showed nucleation-like adsorption kinetics on the carboxylic acid SAM, indicating that peptide-peptide bonding is needed to stabilize the adsorbed layer. Adsorption on the methyl SAM was much lower in quantity for both peptides and seemed to require prior aggregation of the proteins in solution, at least for LKβ15.


  1. 1

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    Article  CAS  Google Scholar 

  2. 2

    Proteins at Interfaces II: Fundamentals and Applications, edited by T. A. Horbett and J. L. Brash (American Chemical Society, Washington, 1995), Vol. 602, p. 1.

    Google Scholar 

  3. 3

    H. Vaisocherová, Z. Zhang, W. Yang, Z. Q. Cao, G. Cheng, A. D. Taylor, M. Piliarik, J. Homola, and S. Y. Jiang, Biosens. Bioelectron. 24, 1924 (2009).

    Article  Google Scholar 

  4. 4

    M. Ebara, J. M. Hoffman, P. S. Stayton, and A. S. Hoffman, Radiat. Phys. Chem. 76, 1409 (2007).

    Article  CAS  Google Scholar 

  5. 5

    P. Wu, D. G. Castner, and D. W. Grainger, J. Biomater. Sci., Polym. Ed. 19, 725 (2008).

    Article  CAS  Google Scholar 

  6. 6

    M. C. Frost et al., Microchem. J. 74, 277 (2003).

    Article  CAS  Google Scholar 

  7. 7

    W. F. DeGrado and J. D. Lear, J. Am. Chem. Soc. 107, 7684 (1985).

    Article  CAS  Google Scholar 

  8. 8

    N. T. Samuel, Ph.D. thesis, University of Washington, 2005.

  9. 9

    J. R. Long, N. Oyler, G. P. Drobny, and P. S. Stayton, J. Am. Chem. Soc. 124, 6297 (2002).

    Article  CAS  Google Scholar 

  10. 10

    J. S. Apte, G. Collier, R. A. Latour, L. J. Gamble, and D. G. Castner, Langmuir 26, 3423 (2010).

    Article  CAS  Google Scholar 

  11. 11

    N. F. Breen, T. Weidner, K. Li, D. G. Castner, and G. P. Drobny, J. Am. Chem. Soc. 131, 14148 (2009).

    Article  CAS  Google Scholar 

  12. 12

    O. Mermut, D. C. Phillips, R. L. York, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Am. Chem. Soc. 128, 3598 (2006).

    Article  CAS  Google Scholar 

  13. 13

    D. C. Phillips, R. L. York, O. Mermut, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Phys. Chem. C 111, 255 (2007).

    Article  CAS  Google Scholar 

  14. 14

    T. Weidner, J. S. Apte, L. J. Gamble, and D. G. Castner, Langmuir 26, 3433 (2010).

    Article  CAS  Google Scholar 

  15. 15

    T. Weidner, N. F. Breen, G. P. Dobny, and D. G. Castner, J. Phys. Chem. B 113, 15423 (2009).

    Article  CAS  Google Scholar 

  16. 16

    T. Weidner, N. T. Samuel, K. McCrea, L. J. Gamble, R. S. Ward, and D. G. Castner, BioInterphases 5, 9 (2010).

    Article  CAS  Google Scholar 

  17. 17

    R. L. York, W. K. Brown, P. L. Geissler, and G. A. Somorjai, Isr. J. Chem. 47, 51 (2007).

    Article  CAS  Google Scholar 

  18. 18

    R. L. York, O. Mermut, D. C. Phillips, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Phys. Chem. C 111, 8866 (2007).

    Article  CAS  Google Scholar 

  19. 19

    K. P. Fears, S. E. Creager, and R. A. Latour, Langmuir 24, 837 (2008).

    Article  CAS  Google Scholar 

  20. 20

    C. T. Campbell and G. Kim, Biomaterials 28, 2380 (2007).

    Article  CAS  Google Scholar 

  21. 21

    L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 (1998).

    Article  CAS  Google Scholar 

  22. 22

    C. Y. Lee, L. J. Gamble, D. W. Grainger, and D. G. Castner, BioInterphases 1, 82 (2006).

    Article  CAS  Google Scholar 

  23. 23

    L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell, Langmuir 16, 9421 (2000).

    Article  CAS  Google Scholar 

  24. 24

    L. S. Jung and C. T. Campbell, J. Phys. Chem. B 104, 11168 (2000).

    Article  CAS  Google Scholar 

  25. 25

    L. Y. Li, S. F. Chen, and S. Y. Jiang, J. Biomater. Sci., Polym. Ed. 18, 1415 (2007).

    Article  CAS  Google Scholar 

  26. 26

    J. O. Foley, E. Fu, L. J. Gamble, and P. Yager, Langmuir 24, 3628 (2008).

    Article  CAS  Google Scholar 

  27. 27

    M. Piliarik, H. Vaisocherova, and J. Homola, Biosens. Bioelectron. 20, 2104 (2005).

    Article  CAS  Google Scholar 

  28. 28

    J. Homola and S. S. Yee, Sens. Actuators B 51, 331 (1998).

    Article  Google Scholar 

  29. 29

    P. I. Nikitin et al., Sens. Actuators, A 85, 189 (2000).

    Article  Google Scholar 

  30. 30

    D. J. Oshannessy and D. J. Winzor, Anal. Biochem. 236, 275 (1996).

    Article  CAS  Google Scholar 

  31. 31

    D. J. Oshannessy, M. Brighamburke, K. K. Soneson, P. Hensley, and I. Brooks, Anal. Biochem. 212, 457 (1993).

    Article  CAS  Google Scholar 

  32. 32

    P. Schuck, Annu. Rev. Biophys. Biomol. Struct. 26, 541 (1997).

    Article  CAS  Google Scholar 

  33. 33

    P. Schuck and A. P. Minton, Anal. Biochem. 240, 262 (1996).

    Article  CAS  Google Scholar 

  34. 34

    G. S. Tamura, J. R. Hull, M. D. Oberg, and D. G. Castner, Infect. Immun. 74, 5739 (2006).

    Article  CAS  Google Scholar 

  35. 35

    C. T. Campbell, Surf. Sci. Rep. 27, 1 (1997).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to David G. Castner or Charles T. Campbell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Apte, J.S., Gamble, L.J., Castner, D.G. et al. Kinetics of leucine-lysine peptide adsorption and desorption at -CH3 and -COOH terminated alkylthiolate monolayers. Biointerphases 5, 97–104 (2010).

Download citation