Skip to main content

Journal for Biophysical Chemistry

Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays

Abstract

Lanthanide nanomaterials are considered a less toxic alternative to quantum dots for bioimaging applications. This study evaluated the cytotoxicity of terbium (Tb)-doped gadolinium oxide (Gd2O3) and dysprosium oxide (Dy2O3) nanoparticles exposed to human (BEAS-2B) and mouse (L929) cell lines at a concentration range of 200–2000 (μg/ml for 48 h. Two assay methods were utilized—WST-8 assay (colorimetric) based on mitochondrial metabolic activity and Pico-Green assay (fluorescence), which measures total DNA content. The authors' data showed that Tb-doped Gd2O3 nanoparticles were consistently more toxic than Tb-doped Dy2O3 nanoparticles. However, exposure to these nanomaterials caused a decrease in proliferation rate for both cell lines rather than a net loss of viable cells after 48 h of exposure. Additionally, there was some degree of discrepancy observed with the two assay methods. For the mouse L929 cell line, the WST-8 assay yielded consistently lower proliferation rates compared to the Pico-Green assay, whereas the opposite trend was observed for the human BEAS-2B cell line. This could arise because of the differential effects of these nanoparticles on the metabolism of L929 and BEAS-2B cells, which in turn may translate to differences in their postexposure proliferation rates. Hence, the Pico-Green assay could have an advantage over the WST-8 assay because it is not skewed by the differential effects of nanomaterials on cellular metabolism.

Reference

  1. G. K. Das et al., Langmuir 26, 8959 (2010).

    Article  CAS  Google Scholar 

  2. G. K. Das and T. T. Tan, J. Phys. Chem. C 112, 11211 (2008).

    Article  CAS  Google Scholar 

  3. L. Q. Xiong, Z. G. Chen, M. X. Yu, F. Y. Li, C. Liu, and C. H. Huang, Biomaterials 30, 5592 (2009).

    Article  CAS  Google Scholar 

  4. H. G. Kang, F. Tokumasu, M. Clarke, Z. Zhou, J. Tang, T. Nguyen, and J. Hwang, Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2, 48 (2010).

    Article  CAS  Google Scholar 

  5. C. Walkey, E. A. Sykes, and W. C. Chan, Hematology Am Soc Hematol Educ Program 2009, 701 (2009).

    Article  Google Scholar 

  6. R. J. Palmer, J. L. Butenhoff, and J. B. Stevens, Environ. Res. 43, 142 (1987).

    Article  CAS  Google Scholar 

  7. S. Heer, K. Kompe, H. U. Gudel, and M. Haase, Adv. Mater. 16, 2102 (2004).

    Article  CAS  Google Scholar 

  8. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science 300, 1434 (2003).

    Article  CAS  Google Scholar 

  9. S. Aime, D. D. Castelli, S. G. Crich, E. Gianolio, and E. Terreno, Acc. Chem. Res. 42, 822 (2009).

    Article  CAS  Google Scholar 

  10. E. Pérez-Mayoral, V. Negri, J. Soler-Padrós, S. Cerdán, and P. Ballesteros, Eur. J. Radiol. 67, 453 (2008).

    Article  Google Scholar 

  11. C. M. Spangler, C. Spangler, and M. Schäerling, Ann. N.Y. Acad. Sci. 1130, 138 (2008).

    Article  CAS  Google Scholar 

  12. J. Cheon and J. H. Lee, Acc. Chem. Res. 41, 1630 (2008).

    Article  CAS  Google Scholar 

  13. M. Bottrill, L. Kwok, and N. J. Long, Chem. Soc. Rev. 35, 557 (2006).

    Article  CAS  Google Scholar 

  14. M. Norek, E. Kampert, U. Zeitler, and J. A. Peters, J. Am. Chem. Soc. 130, 5335 (2008).

    Article  CAS  Google Scholar 

  15. G. K. Das, P. P. Chan, A. Teo, J. S. Loo, J. M. Anderson, and T. T. Tan, J. Biomed. Mater. Res. Part A 93, 337 (2010).

    Google Scholar 

  16. M. M. Nociari, A. Shalev, P. Benias, and C. Russo, J. Immunol. Methods 213, 157 (1998).

    Article  CAS  Google Scholar 

  17. S. Setua, D. Menon, A. Asok, S. Nair, and M. Koyakutty, Biomaterials 31, 714 (2010).

    Article  CAS  Google Scholar 

  18. T. Mosmann, J. Immunol. Methods 65, 55 (1983).

    Article  CAS  Google Scholar 

  19. G. Malich, B. Markovic, and C. Winder, Toxicology 124, 179 (1997).

    Article  CAS  Google Scholar 

  20. M. Ishiyama, Y. Miyazono, K. Sasamoto, Y. Ohkura, and K. Ueno, Talanta 44, 1299 (1997).

    Article  CAS  Google Scholar 

  21. N. W. Shappell, In Vitro Cell. Dev. Biol.: Anim. 39, 329 (2003).

    Article  CAS  Google Scholar 

  22. Y. Zhang, G. K. Das, R. Xu, and T. T. Tan, J. Mater. Chem. 19, 3696 (2009).

    Article  CAS  Google Scholar 

  23. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, Nat. Biotechnol. 21, 47 (2003).

    Article  CAS  Google Scholar 

  24. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Nat. Biotechnol. 21, 41 (2003).

    Article  CAS  Google Scholar 

  25. T. J. Haley, K. Raymond, N. Komesu, and H. C. Upham, Br J Pharmacol Chemother 17, 526 (1961).

    CAS  Google Scholar 

  26. T. J. Haley, L. Koste, N. Komesu, M. Efros, and H. C. Upham, Toxicol. Appl. Pharmacol. 8, 37 (1966).

    Article  CAS  Google Scholar 

  27. K. W. Ng, D. T. Leong, and D. W. Hutmacher, Tissue Eng. 11, 182 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kee Woei Ng or Joachim Say-Chye Loo.

Additional information

This paper is part of an In Focus section on Biointerphase Science in Singapore, sponsored by Bruker Optik Southeast Asia, IMRE, the Provost's Office and School of Materials Science and Engineering of Nanyang Technological University, and Analytical Technologies Pte. Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heng, B.C., Das, G.K., Zhao, X. et al. Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays. Biointerphases 5, FA88–FA97 (2010). https://doi.org/10.1116/1.3494617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3494617