Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Plasma-micropatterning of albumin nanoparticles: Substrates for enhanced cell-interactive display of ligands

Abstract

The authors demonstrate a novel, efficient, and widely applicable approach to direct the patterning of ligand-functionalized organic nanoparticles derived from albumin on nonconductive, biodegradable polymeric substrates. In contrast to traditional deposition methods for inorganic nanoparticles, the approach involves oxygen plasma treatment of spatially restricted regions on a nonbiopermissive polymer. Albumin nanoparticles conjugated with a truncated fragment of fibronectin containing the Arg-Gly-Asp domain were successfully patterned and used as templates to elicit adhesion and spreading of human mesenchymal stem cells and fibroblasts. Attachment and spreading of both cell types into the plasma-exposed polymer areas was considerably more pronounced than with the ligand alone. The authors hypothesize that the underlying mechanism is oxygen plasma treatment-induced selective enhancement of ligand exposure from the deposited functionalized nanoparticles, which facilitates ligand receptor clustering at the cell membrane. The results highlight a promising nanoscale approach to modulate ligand presentation and spatially direct cell attachment and phenotypic behaviors.

References

  1. 1

    S. Bao and R. Cagan, Dev. Cell 8, 925 (2005).

    Article  CAS  Google Scholar 

  2. 2

    T. Hayashi and R. W. Carthew, Nature (London) 431, 647 (2004).

    Article  CAS  Google Scholar 

  3. 3

    M. A. Schwartz and M. H. Ginsberg, Nat. Cell Biol. 4, E65 (2002).

    Article  CAS  Google Scholar 

  4. 4

    E. A. Cavalcanti-Adam, P. Tomakidi, M. Bezler, and J. P. Spatz, Prog. Orthod. 6, 232 (2005).

    Google Scholar 

  5. 5

    J. M. Goffin, P. Pittet, G. Csucs, J. W. Lussi, J. J. Meister, and B. Hinz, J. Cell Biol. 172, 259 (2006).

    Article  CAS  Google Scholar 

  6. 6

    D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof, and M. Bastmeyer, J. Cell. Sci. 117, 41 (2004).

    Article  CAS  Google Scholar 

  7. 7

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Biotechnol. Prog. 14, 356 (1998).

    Article  CAS  Google Scholar 

  8. 8

    S. Li, S. Bhatia, Y. L. Hu, Y. T. Shiu, Y. S. Li, S. Usami, and S. Chein, Biorheology 38, 101 (2001).

    CAS  Google Scholar 

  9. 9

    C. Ziegler, Fresenius’ J. Anal. Chem. 366, 552 (2000).

    Article  CAS  Google Scholar 

  10. 10

    G. MacBeath and S. L. Schreiber, Science 289, 1760 (2000).

    CAS  Google Scholar 

  11. 11

    C. J. Ziegler, A. P. Silverman, and S. J. Lippard, JBIC, J. Biol. Inorg. Chem. 5, 774 (2000).

    Article  CAS  Google Scholar 

  12. 12

    S. Lan, M. Veiseh, and M. Zhang, Biosens. Bioelectron. 20, 1697 (2005).

    Article  CAS  Google Scholar 

  13. 13

    K. E. Schmalenberg, H. M. Buettner, and K. E. Uhrich, Biomaterials 25, 1851 (2004).

    Article  CAS  Google Scholar 

  14. 14

    D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 97, 2408 (2000).

    Article  CAS  Google Scholar 

  15. 15

    K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, Science 295, 1702 (2002).

    Article  CAS  Google Scholar 

  16. 16

    L. M. Lee, R. L. Heimark, R. Guzman, J. C. Baygents, and Y. Zohar, Lab Chip 6, 1080 (2006).

    Article  CAS  Google Scholar 

  17. 17

    G.-J. Zhang, T. Tanii, T. Zako, T. Hosaka, T. Miyake, Y. Kanari, T. Funatsu, and I. Ohdomari, Small 1, 833 (2005).

    Article  CAS  Google Scholar 

  18. 18

    J. D. Hoff, L. J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, Nano Lett. 4, 853 (2004).

    Article  CAS  Google Scholar 

  19. 19

    M. Veiseh, B. T. Wickes, D. G. Castner, and M. Zhang, Biomaterials 25, 3315 (2004).

    Article  CAS  Google Scholar 

  20. 20

    L. Xu, L. Robert, Q. Ouyang, F. Taddei, Y. Chen, A. B. Lindner, and D. Baigl, Nano Lett. 7, 2068 (2007).

    Article  CAS  Google Scholar 

  21. 21

    G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells, and L. G. Griffith, J. Cell. Sci. 113, 1677 (2000).

    CAS  Google Scholar 

  22. 22

    E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, and J. P. Spatz, Biophys. J. 92, 2964 (2007).

    Article  CAS  Google Scholar 

  23. 23

    R. J. Mannix, S. Kumar, F. Cassiola, M. Montoya-Zavala, E. Feinstein, M. Prentiss, and D. E. Ingber, Nat. Nanotechnol. 3, 36 (2008).

    Article  CAS  Google Scholar 

  24. 24

    A. F. Koenderink, J. V. Hernandez, F. Robicheaux, L. D. Noordam, and A. Polman, Nano Lett. 7, 745 (2007).

    Article  CAS  Google Scholar 

  25. 25

    P. M. Mendes et al., Langmuir 20, 3766 (2004).

    Article  CAS  Google Scholar 

  26. 26

    B. Basnar, J. Xu, D. Li, and I. Willner, Langmuir 23, 2293 (2007).

    Article  CAS  Google Scholar 

  27. 27

    R. I. Sharma, M. Pereira, J. E. Schwarzbauer, and P. V. Moghe, Biomaterials 27, 3589 (2006).

    CAS  Google Scholar 

  28. 28

    T. E. Petersen, H. C. Thogersen, K. Skorstengaard, K. Vibe-Pedersen, P. Sahl, L. Sottrup-Jensen, and S. Magnusson, Proc. Natl. Acad. Sci. U.S.A. 80, 137 (1983).

    Article  CAS  Google Scholar 

  29. 29

    H. Altroff, L. Choulier, and H. J. Mardon, J. Biol. Chem. 278, 491 (2003).

    Article  CAS  Google Scholar 

  30. 30

    A. L. Main, T. S. Harvey, M. Baron, J. Boyd, and I. D. Campbell, Cell 71, 671 (1992).

    Article  CAS  Google Scholar 

  31. 31

    J. E. Schwarzbauer and J. L. Sechler, Curr. Opin. Cell Biol. 11, 622 (1999).

    Article  CAS  Google Scholar 

  32. 32

    G. Hermanson, Bioconjugate Techniques (Academic, New York, 1996).

    Google Scholar 

  33. 33

    M. Pereira, R. I. Sharma, R. Penkala, T. A. Gentzel, J. E. Schwarzbauer, and P. V. Moghe, Tissue Eng. 13, 567 (2007).

    Article  CAS  Google Scholar 

  34. 34

    E. Tziampazis, J. Kohn, and P. V. Moghe, Biomaterials 21, 511 (2000).

    Article  CAS  Google Scholar 

  35. 35

    B. A. Langowski and K. E. Uhrich, Langmuir 21, 10509 (2005).

    Article  CAS  Google Scholar 

  36. 36

    R. McBeath, D. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Dev. Cell 6, 483 (2004).

    Article  CAS  Google Scholar 

  37. 37

    J. R. Hall, C. A. L. Westerdahl, A. T. Devine, and M. J. Bodnar, J. Appl. Polym. Sci. 13, 2085 (1969).

    Article  CAS  Google Scholar 

  38. 38

    C. M. Chan, T. M. Ko, and H. Hiraoka, Surf. Sci. Rep. 24, 1 (1996).

    Article  CAS  Google Scholar 

  39. 39

    A. Khademhosseini, K. Y. Suh, S. Jon, G. Eng, J. Yeh, G.-J. Chen, and R. Langer, Anal. Chem. 76, 3675 (2004).

    Article  CAS  Google Scholar 

  40. 40

    B. A. Langowski and K. E. Uhrich, Langmuir 21, 6366 (2005).

    Article  CAS  Google Scholar 

  41. 41

    S. I. Ertel and J. Kohn, J. Biomed. Mater. Res. 28, 919 (1994).

    Article  CAS  Google Scholar 

  42. 42

    R. I. Sharma, D. I. Shreiber, and P. V. Moghe, Tissue Eng. 14, 1237 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prabhas V. Moghe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rossi, M.P., Xu, J., Schwarzbauer, J. et al. Plasma-micropatterning of albumin nanoparticles: Substrates for enhanced cell-interactive display of ligands. Biointerphases 5, 105–113 (2010). https://doi.org/10.1116/1.3507236

Download citation