Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Plasma-micropatterning of albumin nanoparticles: Substrates for enhanced cell-interactive display of ligands

Article metrics

Abstract

The authors demonstrate a novel, efficient, and widely applicable approach to direct the patterning of ligand-functionalized organic nanoparticles derived from albumin on nonconductive, biodegradable polymeric substrates. In contrast to traditional deposition methods for inorganic nanoparticles, the approach involves oxygen plasma treatment of spatially restricted regions on a nonbiopermissive polymer. Albumin nanoparticles conjugated with a truncated fragment of fibronectin containing the Arg-Gly-Asp domain were successfully patterned and used as templates to elicit adhesion and spreading of human mesenchymal stem cells and fibroblasts. Attachment and spreading of both cell types into the plasma-exposed polymer areas was considerably more pronounced than with the ligand alone. The authors hypothesize that the underlying mechanism is oxygen plasma treatment-induced selective enhancement of ligand exposure from the deposited functionalized nanoparticles, which facilitates ligand receptor clustering at the cell membrane. The results highlight a promising nanoscale approach to modulate ligand presentation and spatially direct cell attachment and phenotypic behaviors.

References

  1. 1

    S. Bao and R. Cagan, Dev. Cell 8, 925 (2005).

  2. 2

    T. Hayashi and R. W. Carthew, Nature (London) 431, 647 (2004).

  3. 3

    M. A. Schwartz and M. H. Ginsberg, Nat. Cell Biol. 4, E65 (2002).

  4. 4

    E. A. Cavalcanti-Adam, P. Tomakidi, M. Bezler, and J. P. Spatz, Prog. Orthod. 6, 232 (2005).

  5. 5

    J. M. Goffin, P. Pittet, G. Csucs, J. W. Lussi, J. J. Meister, and B. Hinz, J. Cell Biol. 172, 259 (2006).

  6. 6

    D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof, and M. Bastmeyer, J. Cell. Sci. 117, 41 (2004).

  7. 7

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Biotechnol. Prog. 14, 356 (1998).

  8. 8

    S. Li, S. Bhatia, Y. L. Hu, Y. T. Shiu, Y. S. Li, S. Usami, and S. Chein, Biorheology 38, 101 (2001).

  9. 9

    C. Ziegler, Fresenius’ J. Anal. Chem. 366, 552 (2000).

  10. 10

    G. MacBeath and S. L. Schreiber, Science 289, 1760 (2000).

  11. 11

    C. J. Ziegler, A. P. Silverman, and S. J. Lippard, JBIC, J. Biol. Inorg. Chem. 5, 774 (2000).

  12. 12

    S. Lan, M. Veiseh, and M. Zhang, Biosens. Bioelectron. 20, 1697 (2005).

  13. 13

    K. E. Schmalenberg, H. M. Buettner, and K. E. Uhrich, Biomaterials 25, 1851 (2004).

  14. 14

    D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 97, 2408 (2000).

  15. 15

    K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, Science 295, 1702 (2002).

  16. 16

    L. M. Lee, R. L. Heimark, R. Guzman, J. C. Baygents, and Y. Zohar, Lab Chip 6, 1080 (2006).

  17. 17

    G.-J. Zhang, T. Tanii, T. Zako, T. Hosaka, T. Miyake, Y. Kanari, T. Funatsu, and I. Ohdomari, Small 1, 833 (2005).

  18. 18

    J. D. Hoff, L. J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, Nano Lett. 4, 853 (2004).

  19. 19

    M. Veiseh, B. T. Wickes, D. G. Castner, and M. Zhang, Biomaterials 25, 3315 (2004).

  20. 20

    L. Xu, L. Robert, Q. Ouyang, F. Taddei, Y. Chen, A. B. Lindner, and D. Baigl, Nano Lett. 7, 2068 (2007).

  21. 21

    G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells, and L. G. Griffith, J. Cell. Sci. 113, 1677 (2000).

  22. 22

    E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, and J. P. Spatz, Biophys. J. 92, 2964 (2007).

  23. 23

    R. J. Mannix, S. Kumar, F. Cassiola, M. Montoya-Zavala, E. Feinstein, M. Prentiss, and D. E. Ingber, Nat. Nanotechnol. 3, 36 (2008).

  24. 24

    A. F. Koenderink, J. V. Hernandez, F. Robicheaux, L. D. Noordam, and A. Polman, Nano Lett. 7, 745 (2007).

  25. 25

    P. M. Mendes et al., Langmuir 20, 3766 (2004).

  26. 26

    B. Basnar, J. Xu, D. Li, and I. Willner, Langmuir 23, 2293 (2007).

  27. 27

    R. I. Sharma, M. Pereira, J. E. Schwarzbauer, and P. V. Moghe, Biomaterials 27, 3589 (2006).

  28. 28

    T. E. Petersen, H. C. Thogersen, K. Skorstengaard, K. Vibe-Pedersen, P. Sahl, L. Sottrup-Jensen, and S. Magnusson, Proc. Natl. Acad. Sci. U.S.A. 80, 137 (1983).

  29. 29

    H. Altroff, L. Choulier, and H. J. Mardon, J. Biol. Chem. 278, 491 (2003).

  30. 30

    A. L. Main, T. S. Harvey, M. Baron, J. Boyd, and I. D. Campbell, Cell 71, 671 (1992).

  31. 31

    J. E. Schwarzbauer and J. L. Sechler, Curr. Opin. Cell Biol. 11, 622 (1999).

  32. 32

    G. Hermanson, Bioconjugate Techniques (Academic, New York, 1996).

  33. 33

    M. Pereira, R. I. Sharma, R. Penkala, T. A. Gentzel, J. E. Schwarzbauer, and P. V. Moghe, Tissue Eng. 13, 567 (2007).

  34. 34

    E. Tziampazis, J. Kohn, and P. V. Moghe, Biomaterials 21, 511 (2000).

  35. 35

    B. A. Langowski and K. E. Uhrich, Langmuir 21, 10509 (2005).

  36. 36

    R. McBeath, D. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Dev. Cell 6, 483 (2004).

  37. 37

    J. R. Hall, C. A. L. Westerdahl, A. T. Devine, and M. J. Bodnar, J. Appl. Polym. Sci. 13, 2085 (1969).

  38. 38

    C. M. Chan, T. M. Ko, and H. Hiraoka, Surf. Sci. Rep. 24, 1 (1996).

  39. 39

    A. Khademhosseini, K. Y. Suh, S. Jon, G. Eng, J. Yeh, G.-J. Chen, and R. Langer, Anal. Chem. 76, 3675 (2004).

  40. 40

    B. A. Langowski and K. E. Uhrich, Langmuir 21, 6366 (2005).

  41. 41

    S. I. Ertel and J. Kohn, J. Biomed. Mater. Res. 28, 919 (1994).

  42. 42

    R. I. Sharma, D. I. Shreiber, and P. V. Moghe, Tissue Eng. 14, 1237 (2008).

Download references

Author information

Correspondence to Prabhas V. Moghe.

Rights and permissions

Reprints and Permissions

About this article