Skip to main content

Journal for Biophysical Chemistry

Human guanylate-binding protein 1 as a model system investigated by several surface techniques


In medical technologies concerning the surface immobilization of proteins in a defined orientation, maintaining their activity is a critical aspect. Therefore, in this study, the authors have investigated the activity of an elongated protein attached to a self-assembled monolayer supported streptavidin layer for different relative orientations of the protein with regard to the surface. Several mutants of this protein, human guanylate-binding protein 1 (hGBP1) showing GTPase catalytic activity, have been furnished with either one or two biotin anchors. Various independent methods that are based on different biophysical properties such as surface plasmon resonance, atomic force microscopy, and quartz crystal microbalance have been used to determine the orientation of the hGBP1 variants after anchoring them via a streptavidin-linker to a biotinylated surface. The activity of guanosine-triphosphate hydrolysis of hGBP1 monomers bound on the surface is found to depend on their orientation relative to the substrate, relating to their ability to form dimers with other neighboring anchored mutants; the maximum activity is lower than that observed in solutions, as might be expected from diffusion limitations at the solid/liquid interface on the one hand and prevention from homodimer formation due to immobilization on the other hand.


  1. 1

    C. Grunwald, K. Schulze, A. Reichel, V. U. Weiss, D. Blaas, J. Piehler, K.-H. Wiesmüller, and R. Tampé, Proc. Natl. Acad. Sci. U.S.A. 107, 6146 (2010).

    CAS  Article  Google Scholar 

  2. 2

    L. S. Wong, F. Khan, and J. Micklefield, Chem. Rev. (Washington, D.C.) 109, 4025 (2009).

    CAS  Article  Google Scholar 

  3. 3

    S. Lata, A. Reichel, R. Brock, R. Tampé, and J. Piehler, J. Am. Chem. Soc. 127, 10205 (2005).

    CAS  Article  Google Scholar 

  4. 4

    H. R. Bourne, D. A. Sanders, and F. McCormick, Nature (London) 348, 125 (1990).

    CAS  Article  Google Scholar 

  5. 5

    S. L. Anderson, J. M. Carton, J. Lou, L. Xing, and B. Y. Rubin, Virology 256, 8 (1999).

    CAS  Article  Google Scholar 

  6. 6

    P. Staeheli, F. Pitossi, and J. Pavlovic, Trends Cell Biol. 3, 268 (1993).

    CAS  Article  Google Scholar 

  7. 7

    G. J. K. Praefcke, M. Geyer, M. Schwemmle, H. R. Kalbitzer, and C. Herrmann, J. Mol. Biol. 292, 321 (1999).

    CAS  Article  Google Scholar 

  8. 8

    S. Sever, H. Damke, and S. L. Schmid, J. Cell Biol. 150, 1137 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Y. S. Cheng, C. E. Patterson, and P. Staeheli, Mol. Cell. Biol. 11, 4717 (1991).

    CAS  Google Scholar 

  10. 10

    B. Prakash, L. Renault, G. J. K. Praefcke, C. Herrmann, and A. Wittinghofer, EMBO J. 19, 4555 (2000).

    CAS  Article  Google Scholar 

  11. 11

    S. Kunzelmann, G. J. Praefcke, and C. Herrmann, J. Biol. Chem. 281, 28627 (2006).

    CAS  Article  Google Scholar 

  12. 12

    M. Schwemmle and P. Staeheli, J. Biol. Chem. 269, 11299 (1994).

    CAS  Google Scholar 

  13. 13

    C. Grunwald, W. Eck, N. Opitz, J. Kuhlmann, and C. Wöll, Phys. Chem. Chem. Phys. 6, 4358 (2004).

    CAS  Article  Google Scholar 

  14. 14

    R. Chelmowski, A. Prekelt, C. Grunwald, and C. Wöll, J. Phys. Chem. A 111, 12295 (2007).

    CAS  Article  Google Scholar 

  15. 15

    H.-L. Schmidt, W. Schumann, and F. Scheller, Specific Features of Biosensors Sensors, A Comprehensive Survey (Verlag Chemie, Weinheim, (1992), Vol. 1, pp. 719–801.

    Google Scholar 

  16. 16

    C. Czeslik, Z. Phys. Chem. 218, 771 (2004).

    CAS  Article  Google Scholar 

  17. 17

    C. Czeslik, G. Jackler, and C. Royer, Spectroscopy 16, 139 (2002).

    CAS  Article  Google Scholar 

  18. 18

    W. Norde, Macromol. Symp. 103, 5 (1996).

    CAS  Article  Google Scholar 

  19. 19

    V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, Langmuir 12, (1996).

  20. 20

    C. Calonder, Y. Tie, and P. R. van Tassel, Proc. Natl. Acad. Sci. U.S.A. 98, 10664 (2001).

    CAS  Article  Google Scholar 

  21. 21

    M. Kind and C. Wöll, Prog. Surf. Sci. 84, 230 (2009).

    CAS  Article  Google Scholar 

  22. 22

    E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).

    CAS  Article  Google Scholar 

  23. 23

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    CAS  Article  Google Scholar 

  24. 24

    S. Herrwerth, T. Rosendahl, C. Feng, J. Fick, W. Eck, M. Himmelhaus, R. Dahint, and M. Grunze, Langmuir 19, 1880 (2003).

    CAS  Article  Google Scholar 

  25. 25

    R. G. Chapman, E. Ostuni, S. Takayama, R. E. Holmlin, L. Yan, and G. M. Whitesides, J. Am. Chem. Soc. 122, 8303 (2000).

    CAS  Article  Google Scholar 

  26. 26

    R. G. Chapman, E. Ostuni, L. Yan, and G. M. Whitesides, Langmuir 16, 6927 (2000).

    CAS  Article  Google Scholar 

  27. 27

    S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

    CAS  Article  Google Scholar 

  28. 28

    A. J. Pertsin, M. Grunze, and I. A. Garbuzova, J. Phys. Chem. B 102, 4918 (1998).

    CAS  Article  Google Scholar 

  29. 29

    A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).

    CAS  Article  Google Scholar 

  30. 30

    A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).

    CAS  Article  Google Scholar 

  31. 31

    K. Prime and G. Whitesides, Science 252, 1164 (1991).

    CAS  Article  Google Scholar 

  32. 32

    B. P. Lee, J. L. Dalsin, and P. B. Messersmith, Biomacromolecules 3, 1038 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Poly(ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, edited by J. M. Harris (Plenum, New York, 1992), Vol. 43, pp. 233–234.

    Google Scholar 

  34. 34

    E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, Langmuir 17, 5605 (2001).

    CAS  Article  Google Scholar 

  35. 35

    B. Prakash, G. J. K. Praefcke, L. Renault, A. Wittinghofer, and C. Herrmann, Nature (London) 403, 567 (2000).

    CAS  Article  Google Scholar 

  36. 36

    S. Kunzelmann, G. J. Praefcke, and C. Herrmann, Methods Enzymol. 404, 512 (2005).

    CAS  Article  Google Scholar 

  37. 37

    G. J. K. Praefcke, S. Kloep, U. Benscheid, H. Lilie, B. Prakash, and C. Herrmann, J. Mol. Biol. 344, 257 (2004).

    CAS  Article  Google Scholar 

  38. 38

    G. J. K. Praefcke and H. T. McMahon, Nat. Rev. Mol. Cell Biol. 5, 133 (2004).

    CAS  Article  Google Scholar 

  39. 39

    A. Ghosh, G. J. K. Praefcke, L. Renault, A. Wittinghofer, and C. Herrmann, Nature (London) 440, 101 (2006).

    CAS  Article  Google Scholar 

  40. 40

    K. Scheffzek, M. R. Ahmadian, W. Kabsch, L. Wiesmüller, A. Lautwein, F. Schmitz, and A. Wittinghofer, Science 277, 333 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 99, 1823 (1999).

    CAS  Article  Google Scholar 

  42. 42

    S. Xu and G. Liu, Langmuir 13, 127 (1997).

    Article  Google Scholar 

  43. 43

    D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 5, 491 (2010).

    CAS  Article  Google Scholar 

  44. 44

    M. Meyers and K. Chawla, Mechanical Behaviors of Materials, 01st ed (Prentice-Hall, Upper Saddle River, NJ, 1999), Sec. 13.10, pp. 570–580.

    Google Scholar 

  45. 45

    S. C. Gill and P. H. von Hippel, Anal. Biochem. 182, 319 (1989).

    CAS  Article  Google Scholar 

  46. 46

    See supplementary material at E-BJIOBN-5-303004 for the chemical structure of the used thiols (Fig. 1) and the QCM multiple frequency and dissipation data (Fig. 2) used for the calculation of the thickness of the adsorbed protein films.

  47. 47

    T. Vöpel, A. Syguda, N. Britzen-Laurent, S. Kunzelmann, M.-B. Lüdemann, C. Dovengerds, M. Stürzl, and C. Herrmann, J. Mol. Biol. 400, 63 (2010).

    Article  Google Scholar 

  48. 48

    T. Vöpel, S. Kunzelmann, and C. Herrmann, FEBS Lett. 583, 1923 (2009).

    Article  Google Scholar 

  49. 49

    E. Ostuni, L. Yan, and G. M. Whitesides, Colloids Surf., B 15, 3 (1999).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Christof Wöll.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kerstan, A., Ladnorg, T., Grunwald, C. et al. Human guanylate-binding protein 1 as a model system investigated by several surface techniques. Biointerphases 5, 131–138 (2010).

Download citation