Skip to main content

Journal for Biophysical Chemistry

Human guanylate-binding protein 1 as a model system investigated by several surface techniques

Abstract

In medical technologies concerning the surface immobilization of proteins in a defined orientation, maintaining their activity is a critical aspect. Therefore, in this study, the authors have investigated the activity of an elongated protein attached to a self-assembled monolayer supported streptavidin layer for different relative orientations of the protein with regard to the surface. Several mutants of this protein, human guanylate-binding protein 1 (hGBP1) showing GTPase catalytic activity, have been furnished with either one or two biotin anchors. Various independent methods that are based on different biophysical properties such as surface plasmon resonance, atomic force microscopy, and quartz crystal microbalance have been used to determine the orientation of the hGBP1 variants after anchoring them via a streptavidin-linker to a biotinylated surface. The activity of guanosine-triphosphate hydrolysis of hGBP1 monomers bound on the surface is found to depend on their orientation relative to the substrate, relating to their ability to form dimers with other neighboring anchored mutants; the maximum activity is lower than that observed in solutions, as might be expected from diffusion limitations at the solid/liquid interface on the one hand and prevention from homodimer formation due to immobilization on the other hand.

References

  1. C. Grunwald, K. Schulze, A. Reichel, V. U. Weiss, D. Blaas, J. Piehler, K.-H. Wiesmüller, and R. Tampé, Proc. Natl. Acad. Sci. U.S.A. 107, 6146 (2010).

    Article  CAS  Google Scholar 

  2. L. S. Wong, F. Khan, and J. Micklefield, Chem. Rev. (Washington, D.C.) 109, 4025 (2009).

    Article  CAS  Google Scholar 

  3. S. Lata, A. Reichel, R. Brock, R. Tampé, and J. Piehler, J. Am. Chem. Soc. 127, 10205 (2005).

    Article  CAS  Google Scholar 

  4. H. R. Bourne, D. A. Sanders, and F. McCormick, Nature (London) 348, 125 (1990).

    Article  CAS  Google Scholar 

  5. S. L. Anderson, J. M. Carton, J. Lou, L. Xing, and B. Y. Rubin, Virology 256, 8 (1999).

    Article  CAS  Google Scholar 

  6. P. Staeheli, F. Pitossi, and J. Pavlovic, Trends Cell Biol. 3, 268 (1993).

    Article  CAS  Google Scholar 

  7. G. J. K. Praefcke, M. Geyer, M. Schwemmle, H. R. Kalbitzer, and C. Herrmann, J. Mol. Biol. 292, 321 (1999).

    Article  CAS  Google Scholar 

  8. S. Sever, H. Damke, and S. L. Schmid, J. Cell Biol. 150, 1137 (2000).

    Article  CAS  Google Scholar 

  9. Y. S. Cheng, C. E. Patterson, and P. Staeheli, Mol. Cell. Biol. 11, 4717 (1991).

    CAS  Google Scholar 

  10. B. Prakash, L. Renault, G. J. K. Praefcke, C. Herrmann, and A. Wittinghofer, EMBO J. 19, 4555 (2000).

    Article  CAS  Google Scholar 

  11. S. Kunzelmann, G. J. Praefcke, and C. Herrmann, J. Biol. Chem. 281, 28627 (2006).

    Article  CAS  Google Scholar 

  12. M. Schwemmle and P. Staeheli, J. Biol. Chem. 269, 11299 (1994).

    CAS  Google Scholar 

  13. C. Grunwald, W. Eck, N. Opitz, J. Kuhlmann, and C. Wöll, Phys. Chem. Chem. Phys. 6, 4358 (2004).

    Article  CAS  Google Scholar 

  14. R. Chelmowski, A. Prekelt, C. Grunwald, and C. Wöll, J. Phys. Chem. A 111, 12295 (2007).

    Article  CAS  Google Scholar 

  15. H.-L. Schmidt, W. Schumann, and F. Scheller, Specific Features of Biosensors Sensors, A Comprehensive Survey (Verlag Chemie, Weinheim, (1992), Vol. 1, pp. 719–801.

    Google Scholar 

  16. C. Czeslik, Z. Phys. Chem. 218, 771 (2004).

    Article  CAS  Google Scholar 

  17. C. Czeslik, G. Jackler, and C. Royer, Spectroscopy 16, 139 (2002).

    Article  CAS  Google Scholar 

  18. W. Norde, Macromol. Symp. 103, 5 (1996).

    Article  CAS  Google Scholar 

  19. V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, Langmuir 12, (1996).

  20. C. Calonder, Y. Tie, and P. R. van Tassel, Proc. Natl. Acad. Sci. U.S.A. 98, 10664 (2001).

    Article  CAS  Google Scholar 

  21. M. Kind and C. Wöll, Prog. Surf. Sci. 84, 230 (2009).

    Article  CAS  Google Scholar 

  22. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).

    Article  CAS  Google Scholar 

  23. K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    Article  CAS  Google Scholar 

  24. S. Herrwerth, T. Rosendahl, C. Feng, J. Fick, W. Eck, M. Himmelhaus, R. Dahint, and M. Grunze, Langmuir 19, 1880 (2003).

    Article  CAS  Google Scholar 

  25. R. G. Chapman, E. Ostuni, S. Takayama, R. E. Holmlin, L. Yan, and G. M. Whitesides, J. Am. Chem. Soc. 122, 8303 (2000).

    Article  CAS  Google Scholar 

  26. R. G. Chapman, E. Ostuni, L. Yan, and G. M. Whitesides, Langmuir 16, 6927 (2000).

    Article  CAS  Google Scholar 

  27. S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

    Article  CAS  Google Scholar 

  28. A. J. Pertsin, M. Grunze, and I. A. Garbuzova, J. Phys. Chem. B 102, 4918 (1998).

    Article  CAS  Google Scholar 

  29. A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).

    Article  CAS  Google Scholar 

  30. A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).

    Article  CAS  Google Scholar 

  31. K. Prime and G. Whitesides, Science 252, 1164 (1991).

    Article  CAS  Google Scholar 

  32. B. P. Lee, J. L. Dalsin, and P. B. Messersmith, Biomacromolecules 3, 1038 (2002).

    Article  CAS  Google Scholar 

  33. Poly(ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, edited by J. M. Harris (Plenum, New York, 1992), Vol. 43, pp. 233–234.

    Google Scholar 

  34. E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, Langmuir 17, 5605 (2001).

    Article  CAS  Google Scholar 

  35. B. Prakash, G. J. K. Praefcke, L. Renault, A. Wittinghofer, and C. Herrmann, Nature (London) 403, 567 (2000).

    Article  CAS  Google Scholar 

  36. S. Kunzelmann, G. J. Praefcke, and C. Herrmann, Methods Enzymol. 404, 512 (2005).

    Article  CAS  Google Scholar 

  37. G. J. K. Praefcke, S. Kloep, U. Benscheid, H. Lilie, B. Prakash, and C. Herrmann, J. Mol. Biol. 344, 257 (2004).

    Article  CAS  Google Scholar 

  38. G. J. K. Praefcke and H. T. McMahon, Nat. Rev. Mol. Cell Biol. 5, 133 (2004).

    Article  CAS  Google Scholar 

  39. A. Ghosh, G. J. K. Praefcke, L. Renault, A. Wittinghofer, and C. Herrmann, Nature (London) 440, 101 (2006).

    Article  CAS  Google Scholar 

  40. K. Scheffzek, M. R. Ahmadian, W. Kabsch, L. Wiesmüller, A. Lautwein, F. Schmitz, and A. Wittinghofer, Science 277, 333 (1997).

    Article  CAS  Google Scholar 

  41. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 99, 1823 (1999).

    Article  CAS  Google Scholar 

  42. S. Xu and G. Liu, Langmuir 13, 127 (1997).

    Article  Google Scholar 

  43. D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 5, 491 (2010).

    Article  CAS  Google Scholar 

  44. M. Meyers and K. Chawla, Mechanical Behaviors of Materials, 01st ed (Prentice-Hall, Upper Saddle River, NJ, 1999), Sec. 13.10, pp. 570–580.

    Google Scholar 

  45. S. C. Gill and P. H. von Hippel, Anal. Biochem. 182, 319 (1989).

    Article  CAS  Google Scholar 

  46. See supplementary material at E-BJIOBN-5-303004 for the chemical structure of the used thiols (Fig. 1) and the QCM multiple frequency and dissipation data (Fig. 2) used for the calculation of the thickness of the adsorbed protein films.

  47. T. Vöpel, A. Syguda, N. Britzen-Laurent, S. Kunzelmann, M.-B. Lüdemann, C. Dovengerds, M. Stürzl, and C. Herrmann, J. Mol. Biol. 400, 63 (2010).

    Article  Google Scholar 

  48. T. Vöpel, S. Kunzelmann, and C. Herrmann, FEBS Lett. 583, 1923 (2009).

    Article  Google Scholar 

  49. E. Ostuni, L. Yan, and G. M. Whitesides, Colloids Surf., B 15, 3 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Wöll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerstan, A., Ladnorg, T., Grunwald, C. et al. Human guanylate-binding protein 1 as a model system investigated by several surface techniques. Biointerphases 5, 131–138 (2010). https://doi.org/10.1116/1.3516461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3516461