Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Human guanylate-binding protein 1 as a model system investigated by several surface techniques

Article metrics

  • 461 Accesses

  • 5 Citations

Abstract

In medical technologies concerning the surface immobilization of proteins in a defined orientation, maintaining their activity is a critical aspect. Therefore, in this study, the authors have investigated the activity of an elongated protein attached to a self-assembled monolayer supported streptavidin layer for different relative orientations of the protein with regard to the surface. Several mutants of this protein, human guanylate-binding protein 1 (hGBP1) showing GTPase catalytic activity, have been furnished with either one or two biotin anchors. Various independent methods that are based on different biophysical properties such as surface plasmon resonance, atomic force microscopy, and quartz crystal microbalance have been used to determine the orientation of the hGBP1 variants after anchoring them via a streptavidin-linker to a biotinylated surface. The activity of guanosine-triphosphate hydrolysis of hGBP1 monomers bound on the surface is found to depend on their orientation relative to the substrate, relating to their ability to form dimers with other neighboring anchored mutants; the maximum activity is lower than that observed in solutions, as might be expected from diffusion limitations at the solid/liquid interface on the one hand and prevention from homodimer formation due to immobilization on the other hand.

References

  1. 1

    C. Grunwald, K. Schulze, A. Reichel, V. U. Weiss, D. Blaas, J. Piehler, K.-H. Wiesmüller, and R. Tampé, Proc. Natl. Acad. Sci. U.S.A. 107, 6146 (2010).

  2. 2

    L. S. Wong, F. Khan, and J. Micklefield, Chem. Rev. (Washington, D.C.) 109, 4025 (2009).

  3. 3

    S. Lata, A. Reichel, R. Brock, R. Tampé, and J. Piehler, J. Am. Chem. Soc. 127, 10205 (2005).

  4. 4

    H. R. Bourne, D. A. Sanders, and F. McCormick, Nature (London) 348, 125 (1990).

  5. 5

    S. L. Anderson, J. M. Carton, J. Lou, L. Xing, and B. Y. Rubin, Virology 256, 8 (1999).

  6. 6

    P. Staeheli, F. Pitossi, and J. Pavlovic, Trends Cell Biol. 3, 268 (1993).

  7. 7

    G. J. K. Praefcke, M. Geyer, M. Schwemmle, H. R. Kalbitzer, and C. Herrmann, J. Mol. Biol. 292, 321 (1999).

  8. 8

    S. Sever, H. Damke, and S. L. Schmid, J. Cell Biol. 150, 1137 (2000).

  9. 9

    Y. S. Cheng, C. E. Patterson, and P. Staeheli, Mol. Cell. Biol. 11, 4717 (1991).

  10. 10

    B. Prakash, L. Renault, G. J. K. Praefcke, C. Herrmann, and A. Wittinghofer, EMBO J. 19, 4555 (2000).

  11. 11

    S. Kunzelmann, G. J. Praefcke, and C. Herrmann, J. Biol. Chem. 281, 28627 (2006).

  12. 12

    M. Schwemmle and P. Staeheli, J. Biol. Chem. 269, 11299 (1994).

  13. 13

    C. Grunwald, W. Eck, N. Opitz, J. Kuhlmann, and C. Wöll, Phys. Chem. Chem. Phys. 6, 4358 (2004).

  14. 14

    R. Chelmowski, A. Prekelt, C. Grunwald, and C. Wöll, J. Phys. Chem. A 111, 12295 (2007).

  15. 15

    H.-L. Schmidt, W. Schumann, and F. Scheller, Specific Features of Biosensors Sensors, A Comprehensive Survey (Verlag Chemie, Weinheim, (1992), Vol. 1, pp. 719–801.

  16. 16

    C. Czeslik, Z. Phys. Chem. 218, 771 (2004).

  17. 17

    C. Czeslik, G. Jackler, and C. Royer, Spectroscopy 16, 139 (2002).

  18. 18

    W. Norde, Macromol. Symp. 103, 5 (1996).

  19. 19

    V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, Langmuir 12, (1996).

  20. 20

    C. Calonder, Y. Tie, and P. R. van Tassel, Proc. Natl. Acad. Sci. U.S.A. 98, 10664 (2001).

  21. 21

    M. Kind and C. Wöll, Prog. Surf. Sci. 84, 230 (2009).

  22. 22

    E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).

  23. 23

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

  24. 24

    S. Herrwerth, T. Rosendahl, C. Feng, J. Fick, W. Eck, M. Himmelhaus, R. Dahint, and M. Grunze, Langmuir 19, 1880 (2003).

  25. 25

    R. G. Chapman, E. Ostuni, S. Takayama, R. E. Holmlin, L. Yan, and G. M. Whitesides, J. Am. Chem. Soc. 122, 8303 (2000).

  26. 26

    R. G. Chapman, E. Ostuni, L. Yan, and G. M. Whitesides, Langmuir 16, 6927 (2000).

  27. 27

    S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

  28. 28

    A. J. Pertsin, M. Grunze, and I. A. Garbuzova, J. Phys. Chem. B 102, 4918 (1998).

  29. 29

    A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).

  30. 30

    A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).

  31. 31

    K. Prime and G. Whitesides, Science 252, 1164 (1991).

  32. 32

    B. P. Lee, J. L. Dalsin, and P. B. Messersmith, Biomacromolecules 3, 1038 (2002).

  33. 33

    Poly(ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, edited by J. M. Harris (Plenum, New York, 1992), Vol. 43, pp. 233–234.

  34. 34

    E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, Langmuir 17, 5605 (2001).

  35. 35

    B. Prakash, G. J. K. Praefcke, L. Renault, A. Wittinghofer, and C. Herrmann, Nature (London) 403, 567 (2000).

  36. 36

    S. Kunzelmann, G. J. Praefcke, and C. Herrmann, Methods Enzymol. 404, 512 (2005).

  37. 37

    G. J. K. Praefcke, S. Kloep, U. Benscheid, H. Lilie, B. Prakash, and C. Herrmann, J. Mol. Biol. 344, 257 (2004).

  38. 38

    G. J. K. Praefcke and H. T. McMahon, Nat. Rev. Mol. Cell Biol. 5, 133 (2004).

  39. 39

    A. Ghosh, G. J. K. Praefcke, L. Renault, A. Wittinghofer, and C. Herrmann, Nature (London) 440, 101 (2006).

  40. 40

    K. Scheffzek, M. R. Ahmadian, W. Kabsch, L. Wiesmüller, A. Lautwein, F. Schmitz, and A. Wittinghofer, Science 277, 333 (1997).

  41. 41

    Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 99, 1823 (1999).

  42. 42

    S. Xu and G. Liu, Langmuir 13, 127 (1997).

  43. 43

    D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 5, 491 (2010).

  44. 44

    M. Meyers and K. Chawla, Mechanical Behaviors of Materials, 01st ed (Prentice-Hall, Upper Saddle River, NJ, 1999), Sec. 13.10, pp. 570–580.

  45. 45

    S. C. Gill and P. H. von Hippel, Anal. Biochem. 182, 319 (1989).

  46. 46

    See supplementary material at E-BJIOBN-5-303004 for the chemical structure of the used thiols (Fig. 1) and the QCM multiple frequency and dissipation data (Fig. 2) used for the calculation of the thickness of the adsorbed protein films.

  47. 47

    T. Vöpel, A. Syguda, N. Britzen-Laurent, S. Kunzelmann, M.-B. Lüdemann, C. Dovengerds, M. Stürzl, and C. Herrmann, J. Mol. Biol. 400, 63 (2010).

  48. 48

    T. Vöpel, S. Kunzelmann, and C. Herrmann, FEBS Lett. 583, 1923 (2009).

  49. 49

    E. Ostuni, L. Yan, and G. M. Whitesides, Colloids Surf., B 15, 3 (1999).

Download references

Author information

Correspondence to Christof Wöll.

Rights and permissions

Reprints and Permissions

About this article