Skip to main content

Journal for Biophysical Chemistry

Characterization of supported lipid bilayers incorporating and phosphoinositol-3,4,5-triphosphate by complementary techniques

Abstract

Phosphoinositides are involved in a large number of processes in cells and it is very demanding to study individual protein-lipid interactions in vivo due to their rapid turnover and involvement in simultaneous events. Supported lipid bilayers (SLBs) containing controlled amounts of phosphoinositides provide a defined model system where important specific recognition events involving phosphoinositides can be systematically investigated using surface sensitive analytical techniques. The authors have demonstrated the formation and characterized the assembly kinetics of SLBs incorporating phosphatidylinositol 4,5-biphosphate (PIP2; 1, 5, and 10 wt %) and phosphoinositol-3,4,5-triphosphate (1 wt%) using the quartz crystal microbalance with dissipation monitoring and fluorescence recovery after photobleaching. An increased fraction of phosphoinositides led to a higher barrier to liposome fusion, but full fluidity for the phosphatidylcholine lipids in the formed SLB. Significantly, the majority of phosphoinositides were shown to be immobile. X-ray photoelectron spectroscopy was used for the first time to verify that the PIP2 fraction of lipids in the SLB scales linearly with the amount mixed in from stock solutions.

References

  1. S. Corvera, A. D’Arrigo, and H. Stenmark, Curr. Opin. Cell Biol. 11, 460 (1999).

    Article  CAS  Google Scholar 

  2. G. Di Paolo and P. De Camilli, Nature (London) 443, 651 (2006).

    Article  Google Scholar 

  3. S. McLaughlin, J. Wang, A. Gambhir, and D. Murray, Annu. Rev. Biophys. Biomol. Struct. 31, 151 (2002).

    Article  CAS  Google Scholar 

  4. A. Zachowski, Biochem. J. 294, 1 (1993).

    CAS  Google Scholar 

  5. D. Hilgemann, Pfluegers Arch. Eur. J. Physiol. 455, 55 (2007).

    Article  CAS  Google Scholar 

  6. L. E. Hokin, Annu. Rev. Biochem. 54, 205 (1985).

    Article  CAS  Google Scholar 

  7. N. A. Gokhale, A. Abraham, M. A. Digman, E. Gratton, and W. Cho, J. Biol. Chem. 280, 42831 (2005).

    Article  CAS  Google Scholar 

  8. U. Golebiewska, A. Gambhir, G. Hangyás-Mihályné, I. Zaitseva, J. Rädler, and S. McLaughlin, Biophys. J. 91, 588 (2006).

    Article  CAS  Google Scholar 

  9. K. Krishnan, O. Holub, E. Gratton, A. H. A. Clayton, S. Cody, and P. D. J. Moens, Biophys. J. 96, 5112 (2009).

    Article  CAS  Google Scholar 

  10. A. P. Liu and D. A. Fletcher, Biophys. J. 91, 4064 (2006).

    Article  CAS  Google Scholar 

  11. S. Takeda, A. Saitoh, M. Furuta, N. Satomi, A. Ishino, G. Nishida, H. Sudo, H. Hotani, and K. Takiguchi, J. Mol. Biol. 362, 403 (2006).

    Article  CAS  Google Scholar 

  12. J. Tong, L. Nguyen, A. Vidal, S. A. Simon, J. H. P. Skene, and T. J. McIntosh, Biophys. J. 94, 125 (2008).

    Article  CAS  Google Scholar 

  13. E. T. Castellana and P. S. Cremer, Surf. Sci. Rep. 61, 429 (2006).

    Article  CAS  Google Scholar 

  14. E. Reimhult and K. Kumar, Trends Biotechnol. 26, 82 (2008).

    Article  CAS  Google Scholar 

  15. R. P. Richter, R. Bérat, and A. R. Brisson, Langmuir 22, 3497 (2006).

    Article  CAS  Google Scholar 

  16. M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

    Article  CAS  Google Scholar 

  17. C. Merz, W. Knoll, M. Textor, and E. Reimhult, BioInterphases 3, FA41 (2008).

    Article  CAS  Google Scholar 

  18. A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, Anal. Chem. 80, 3666 (2008).

    Article  CAS  Google Scholar 

  19. C. F. Majkrzak et al., Biophys. J. 79, 3330 (2000).

    Article  CAS  Google Scholar 

  20. S. Kaufmann, G. Papastavrou, K. Kumar, M. Textor, and E. Reimhult, Soft Matter 5, 2804 (2009).

    Article  CAS  Google Scholar 

  21. M. G. Friedrich, F. Gie, R. Naumann, W. Knoll, K. Ataka, J. Heberle, J. Hrabakova, D. H. Murgida, and P. Hildebrandt, Chem. Commun. (Cambridge ) 2004, 2376.

  22. M. G. Friedrich, M. A. Plum, M. G. Santonicola, V. U. Kirste, W. Knoll, B. Ludwig, and R. L. C. Naumann, Biophys. J. 95, 1500 (2008).

    Article  CAS  Google Scholar 

  23. E. Briand, M. Zach, S. Svedhem, B. Kasemo, and S. Petronis, Analyst (Cambridge, U.K.) 135, 343 (2010).

    Article  CAS  Google Scholar 

  24. C.-W. Hsu, H.-R. Liou, W.-F. Su, and L. Wang, J. Colloid Interface Sci. 324, 236 (2008).

    Article  CAS  Google Scholar 

  25. N. Sanghera, M. J. Swann, G. Ronan, and T. J. T. Pinheiro, Biomembranes 1788, 2245 (2009).

    Article  CAS  Google Scholar 

  26. A. Herrig, M. Janke, J. Austermann, V. Gerke, A. Janshoff, and C. Steinem, Biochemistry 45, 13025 (2006).

    Article  CAS  Google Scholar 

  27. M. Janke, A. Herrig, J. Austermann, V. Gerke, C. Steinem, and A. Janshoff, Biochemistry 47, 3762 (2008).

    Article  CAS  Google Scholar 

  28. M. A. Lemmon, Nat. Rev. Mol. Cell Biol. 9, 99 (2008).

    Article  CAS  Google Scholar 

  29. S. McLaughlin and D. Murray, Nature (London) 438, 605 (2005).

    Article  CAS  Google Scholar 

  30. H. M. McConnell, T. H. Watts, R. M. Weis, and A. A. Brian, Biochim. Biophys. Acta 864, 95 (1986).

    CAS  Google Scholar 

  31. See supplementary material at http://dx.doi.org/10.1116/1.3516485 for experimental protocol for vesicle preparation, QCM-D and FRAP experiments and additional data of SLB characterization as well as the sample preparation and normalization values used for the XPS analysis.

  32. M. Rodahl, F. Hook, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).

    Article  CAS  Google Scholar 

  33. E. Reimhult, M. Zach, F. Hook, and B. Kasemo, Langmuir 22, 3313 (2006).

    Article  CAS  Google Scholar 

  34. F. F. Rossetti, M. Bally, R. Michel, M. Textor, and I. Reviakine, Langmuir 21, 6443 (2005).

    Article  CAS  Google Scholar 

  35. K. Carvalho, L. Ramos, C. Roy, and C. Picart, Biophys. J. 95, 4348 (2008).

    Article  CAS  Google Scholar 

  36. E. Reimhult, F. Hook, and B. Kasemo, J. Chem. Phys. 117, 7401 (2002).

    Article  CAS  Google Scholar 

  37. K. Dimitrievski and B. Kasemo, Langmuir 24, 4077 (2008).

    Article  CAS  Google Scholar 

  38. H. Aranda-Espinoza, Y. Chen, N. Dan, T. C. Lubensky, P. Nelson, L. Ramos, and D. A. Weitz, Science 285, 394 (1999).

    Article  CAS  Google Scholar 

  39. P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, J. Colloid Interface Sci. 214, 1 (2001).

    Google Scholar 

  40. F. F. Rossetti, M. Textor, and I. Reviakine, Langmuir 22, 3467 (2006).

    Article  CAS  Google Scholar 

  41. P. Jönsson, M. P. Jonsson, J. O. Tegenfeldt, and F. Höök, Biophys. J. 95, 5334 (2008).

    Article  Google Scholar 

  42. M. L. Wagner and L. K. Tamm, Biophys. J. 81, 266 (2001).

    Article  CAS  Google Scholar 

  43. M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 (2000).

    Article  CAS  Google Scholar 

  44. M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar, Nature 467, 7316 (2010).

    Article  Google Scholar 

  45. T. R. Khan, H. M. Grandin, A. Mashaghi, M. Textor, E. Reimhult, and I. Reviakine, BioInterphases 3, FA90 (2008).

    Article  Google Scholar 

  46. E. Reimhult, B. Kasemo, and F. Höök, Int. J. Mol. Sci. 10, 1683 (2009).

    Article  CAS  Google Scholar 

  47. F. Fernandes, L. M. S. Loura, A. Fedorov, and M. Prieto, J. Lipid Res. 47, 1521 (2006).

    Article  CAS  Google Scholar 

  48. U. Golebiewska, M. Nyako, W. Woturski, I. Zaitseva, and S. McLaughlin, Mol. Biol. Cell 19, 1663 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, M.K., Amstad, E., Mashaghi, A. et al. Characterization of supported lipid bilayers incorporating and phosphoinositol-3,4,5-triphosphate by complementary techniques. Biointerphases 5, 114–119 (2010). https://doi.org/10.1116/1.3516485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3516485