Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures

Abstract

The authors have studied microstructure evolution during thermally induced phase separation in a class of binary supported lipid bilayers using a quantitative application of imaging ellipsometry. The bilayers consist of binary mixtures consisting of a higher melting glycosphingolipid, galactosylceramide (GalCer), which resides primarily in the outer leaflet, and a lower melting, unsaturated phospholipid, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Three different bilayer compositions of GalCer/DLPC mixtures at 35:65, 20:80, and 10:90 molar ratios were cooled at controlled rates from their high-temperature homogeneous phase to temperatures corresponding to their phase coexistence regime and imaged in real time using imaging ellipsometry. During the thermotropic course of GalCer gelation, we find that two distinct types of morphological features modulate. First, the formation and growth of chain and fractal-like defects ascribed to the net change in molecular areas during the phase transition. The formation of these defects is consistent with the expected contraction in the molecular area during the liquid crystalline to gel-phase transition. Second, the nucleation and growth of irregularly shaped gel-phase domains, which exhibit either line-tension dominated compact shape or dendritic domains with extended interfaces. Quantifying domain morphology within the fractal framework reveals a close correspondence, and the quantization of the transition width confirms previous estimates of reduced phase transition cooperativity in supported bilayers. A comparison of domain properties indicates that thermal history, bilayer composition, and cooling rate all influence microstructure details including shapes, sizes, and distributions of domains and defects: At lower cooling rates and lower GalCer fractions compact domains form and at higher GalCer fractions (or at higher cooling rates) dendritic domains are evident. This transition of domain morphology from compact shapes to dendritic shapes at higher cooling rates and higher relative fractions of GalCer suggests kinetic control of shape equilibration in these phospho- and glycolipid mixtures.

References

  1. 1

    R. Welti and M. Glaser, Chem. Phys. Lipids 73, 121 (1994).

    Article  CAS  Google Scholar 

  2. 2

    F. Maxfield, Curr. Opin. Cell Biol. 14, 483 (2002).

    Article  CAS  Google Scholar 

  3. 3

    A. Laude and I. Prior, Mol. Membr Biol. 21, 193 (2004).

    Article  CAS  Google Scholar 

  4. 4

    D. Lingwood and K. Simons, Science 327, 46 (2010).

    Article  CAS  Google Scholar 

  5. 5

    H. McConnell and M. Vrljic, Annu. Rev. Biophys. Biomol. Struct. 32, 469 (2003).

    Article  CAS  Google Scholar 

  6. 6

    S. Keller, A. Radhakrishnan, and H. McConnell, J. Phys. Chem. B 104, 7522 (2000).

    Article  CAS  Google Scholar 

  7. 7

    Y. Hu, K. Meleson, and J. Israelachvili, Biophys. J. 91, 444 (2006).

    Article  CAS  Google Scholar 

  8. 8

    O. Mouritsent and K. Jørgensen, Mol. Membr Biol. 12, 15 (1995).

    Article  Google Scholar 

  9. 9

    V. von Tscharner and H. M. McConnell, Biophys. J. 36, 409 (1981).

    Article  Google Scholar 

  10. 10

    E. London, Curr. Opin. Struct. Biol. 12, 480 (2002).

    Article  CAS  Google Scholar 

  11. 11

    S. Mukherjee and F. Maxfield, Annu. Rev. Cell Dev. Biol. 20, 839 (2004).

    Article  CAS  Google Scholar 

  12. 12

    K. Simons and W. Vaz, Annu. Rev. Biophys. Biomol. Struct. 33, 269 (2004).

    Article  CAS  Google Scholar 

  13. 13

    A. Kusumi, C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R. Kasai, J. Kondo, and T. Fujiwara, Annu. Rev. Biophys. Biomol. Struct. 34, 351 (2005).

    Article  CAS  Google Scholar 

  14. 14

    C. Dietrich, B. Yang, T. Fujiwara, A. Kusumi, and K. Jacobson, Biophys. J. 82, 274 (2002).

    Article  CAS  Google Scholar 

  15. 15

    G. Vereb, J. Szollosi, J. Matko, P. Nagy, T. Farkas, L. Vigh, L. Matyus, T. Waldmann, and S. Damjanovich, Proc. Natl. Acad. Sci. U.S.A. 100, 8053 (2003).

    Article  CAS  Google Scholar 

  16. 16

    E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  17. 17

    L. Tamm and H. McConnell, Biophys. J. 47, 105 (1985).

    Article  CAS  Google Scholar 

  18. 18

    C. M. Ajo-Franklin, P. V. Ganesan, and S. G. Boxer, Biophys. J. 89, 2759 (2005).

    Article  CAS  Google Scholar 

  19. 19

    V. Kiessling and L. Tamm, Biophys. J. 84, 408 (2003).

    Article  CAS  Google Scholar 

  20. 20

    B. Koenig, S. Krueger, W. Orts, C. Majkrzak, N. Berk, J. Silverton, and K. Gawrisch, Langmuir 12, 1343 (1996).

    Article  CAS  Google Scholar 

  21. 21

    E. Evans and E. Sackmann, J. Fluid Mech. 194, 553 (1988).

    Article  Google Scholar 

  22. 22

    A. Prasad, J. Kondev, and H. A. Stone, Phys. Fluids 19, 113103 (2007).

    Article  Google Scholar 

  23. 23

    M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

    Article  CAS  Google Scholar 

  24. 24

    M. Tanaka, J. Hermann, I. Haase, M. Fischer, and S. G. Boxer, Langmuir 23, 5638 (2007).

    Article  CAS  Google Scholar 

  25. 25

    E. T. Castellana and P. S. Cremer, Surf. Sci. Rep. 61, 429 (2006).

    Article  CAS  Google Scholar 

  26. 26

    A. N. Parikh and J. T. Groves, MRS Bull. 31, 507 (2006).

    Article  CAS  Google Scholar 

  27. 27

    M. L. Longo and C. D. Blanchette, Biochim Biophys Acta-Biomemb. 1798, 1357 (2010).

    Article  CAS  Google Scholar 

  28. 28

    S. Bhat, S. Spitalnik, F. Gonzalez-Scarano, and D. Silberberg, Proc. Natl. Acad. Sci. U.S.A. 88, 7131 (1991).

    Article  CAS  Google Scholar 

  29. 29

    J. Fantini, D. Cook, N. Nathanson, S. Spitalnik, and F. Gonzalez-Scarano, Proc. Natl. Acad. Sci. U.S.A. 90, 2700 (1993).

    Article  CAS  Google Scholar 

  30. 30

    P. Clapham, A. McKnight, S. Talbot, and D. Wilkinson, Perspect. Drug Discovery Des. 5, 83 (1996).

    Article  CAS  Google Scholar 

  31. 31

    K. Simons and G. Van Meer, Biochemistry 27, 6197 (1988).

    Article  CAS  Google Scholar 

  32. 32

    K. Suzuki, J. Child Neurol. 18, 595 (2003).

    Article  Google Scholar 

  33. 33

    D. Wenger, M. Sattler, and W. Hiatt, Proc. Natl. Acad. Sci. U.S.A. 71, 854 (1974).

    Article  CAS  Google Scholar 

  34. 34

    T. Thompson and T. Tillack, Annu. Rev. Biophys. Biomol. Struct. 14, 361 (1985).

    Article  CAS  Google Scholar 

  35. 35

    D. Brown and J. Rose, Cell 68, 533 (1992).

    Article  CAS  Google Scholar 

  36. 36

    C. D. Blanchette, W. C. Lin, T. Ratto, M. McElfresh, and M. Longo, Biophys. J. 88, 73a (2005).

    Google Scholar 

  37. 37

    C. D. Blanchette, W. C. Lin, T. V. Ratto, and M. L. Longo, Biophys. J. 90, 4466 (2006).

    Article  CAS  Google Scholar 

  38. 38

    C. Blanchette, W. Lin, C. Orme, T. Ratto, and M. Longo, Langmuir 23, 5875 (2007).

    Article  CAS  Google Scholar 

  39. 39

    C. Blanchette, W. Lin, C. Orme, T. Ratto, and M. Longo, Biophys. J. 94, 2691 (2008).

    Article  CAS  Google Scholar 

  40. 40

    D. Ducharme, J. Max, C. Salesse, and R. Leblanc, J. Phys. Chem. 94, 1925 (1990).

    Article  CAS  Google Scholar 

  41. 41

    M. Howland, A. Szmodis, B. Sanii, and A. Parikh, Biophys. J. 92, 1306 (2007).

    Article  CAS  Google Scholar 

  42. 42

    R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987), p. 1, 539.

    Google Scholar 

  43. 43

    S. Faiss, S. Schuy, D. Weiskopf, C. Steinem, and A. Janshoff, J. Phys. Chem. B 111, 13979 (2007).

    Article  CAS  Google Scholar 

  44. 44

    D. E. Aspnes, Surf. Sci. 101, 84 (1980).

    Article  CAS  Google Scholar 

  45. 45

    A. Szmodis, C. Blanchette, A. Levchenko, A. Navrotsky, M. Longo, C. Orme, and A. Parikh, Soft Matter 4, 1161 (2008).

    Article  CAS  Google Scholar 

  46. 46

    J. Petrov, T. Pfohl, and H. Möhwald, J. Phys. Chem. B 103, 3417 (1999).

    Article  CAS  Google Scholar 

  47. 47

    M. Thoma, M. Schwendler, H. Baltes, C. Helm, T. Pfohl, H. Riegler, and H. Möhwald, Langmuir 12, 1722 (1996).

    Article  CAS  Google Scholar 

  48. 48

    R. Horvath, G. Fricsovszky, and E. Papp, Biosens. Bioelectron. 18, 415 (2003).

    Article  CAS  Google Scholar 

  49. 49

    A. Parikh and D. Allara, J. Chem. Phys. 96, 927 (1992).

    Article  CAS  Google Scholar 

  50. 50

    A. F. Xie, R. Yamada, A. A. Gewirth, and S. Granick, Phys. Rev. Lett. 89, 246103 (2002).

    Article  Google Scholar 

  51. 51

    T. Witten and L. Sander, Phys. Rev. B 27, 5686 (1983).

    Article  Google Scholar 

  52. 52

    E. Sørensen, H. Fogedby, and O. Mouritsen, Phys. Rev. Lett. 61, 2770 (1988).

    Article  Google Scholar 

  53. 53

    W. Curatolo, Biochemistry 24, 6608 (1985).

    Article  CAS  Google Scholar 

  54. 54

    D. Marsh, A. Watts, and P. Knowles, Biochim. Biophys. Acta 465, 500 (1977).

    Article  CAS  Google Scholar 

  55. 55

    B. Zimm and J. Bragg, J. Chem. Phys. 31, 526 (1959).

    Article  CAS  Google Scholar 

  56. 56

    F. Tokumasu, J. Electron Microsc. 51, 1 (2002).

    Article  CAS  Google Scholar 

  57. 57

    D. Needham and E. Evans, Biochemistry 27, 8261 (1988).

    Article  CAS  Google Scholar 

  58. 58

    P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259 (2001).

    Article  CAS  Google Scholar 

  59. 59

    A. Miller, W. Knoll, and H. Möhwald, Phys. Rev. Lett. 56, 2633 (1986).

    Article  CAS  Google Scholar 

  60. 60

    B. Ohler, I. Revenko, and C. Husted, J. Struct. Biol. 133, 1 (2001).

    Article  CAS  Google Scholar 

  61. 61

    A. Arnold, I. Cloutier, A. Ritcey, and M. Auger, Chem. Phys. Lipids 133, 165 (2005).

    Article  CAS  Google Scholar 

  62. 62

    R. Oliveira, M. Tanaka, and B. Maggio, J. Struct. Biol. 149, 158 (2005).

    Article  CAS  Google Scholar 

  63. 63

    J. A. Moran-Mirabal, D. A. Aubrecht, and H. G. Craighead, Langmuir 23, 10661 (2007).

    Article  CAS  Google Scholar 

  64. 64

    S. Schuy and A. Janshoff, Chem Phys Chem 7, 1207 (2006).

    Article  CAS  Google Scholar 

  65. 65

    C. Blanchette, C. Orme, T. Ratto, and M. Longo, Langmuir 24, 1219 (2008).

    Article  CAS  Google Scholar 

  66. 66

    M. Seul, S. Subramaniam, and H. M. McConnell, J. Phys. Chem. 89, 3592 (1985).

    Article  CAS  Google Scholar 

  67. 67

    D. Keller, N. B. Larsen, I. M. Moller, and O. G. Mouritsen, Phys. Rev. Lett. 94, 025701 (2005).

    Article  Google Scholar 

  68. 68

    A. Charrier and F. Thibaudau, Biophys. J. 89, 1094 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szmodis, A.W., Blanchette, C.D., Longo, M.L. et al. Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures. Biointerphases 5, 120–130 (2010). https://doi.org/10.1116/1.3524295

Download citation