Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Surface-modified nanofibrous biomaterial bridge for the enhancement and control of neurite outgrowth

Article metrics

Abstract

Biomaterial bridges constructed from electrospun fibers offer a promising alternative to traditional nerve tissue regeneration substrates. Aligned and unaligned polycaprolactone (PCL) electrospun fibers were prepared and functionalized with the extracellular matrix proteins collagen and laminin using covalent and physical adsorption attachment chemistries. The effect of the protein modified and native PCL nanofiber scaffolds on cell proliferation, neurite outgrowth rate, and orientation was examined with neuronlike PC12 cells. All protein modified scaffolds showed enhanced cellular adhesion and neurite outgrowth compared to unmodified PCL scaffolds. Neurite orientation was found to be in near perfect alignment with the fiber axis for cells grown on aligned fibers, with difference angles of less than 7o from the fiber axis, regardless of the surface chemistry. The bioavailability of PCL fibers with covalently attached laminin was found to be identical to that of PCL fibers with physically adsorbed laminin, indicating that the covalent chemistry did not change the protein conformation into a less active form and the covalent attachment of protein is a suitable method for enhancing the biocompatibility of tissue engineering scaffolds. a) Electronic mail: nicole.zander@arl.army.mil

References

  1. 1

    R. V. Bellamkonda, Biomaterials 27, 3515 (2006).

  2. 2

    X. J. Wen and P. A. Tresco, J. Biomed. Mater. Res. Part A 76A, 626 (2006).

  3. 3

    L. J. Zhang and T. J. Webster, Nanotoday 4, 66 (2009).

  4. 4

    C. E. Schmidt and J. B. Leach, Annu. Rev. Biomed. Eng. 5, 293 (2003).

  5. 5

    J. M. Corey, D. Y. Lin, K. B. Mycek, Q. Chen, S. Samuel, E. L. Feldman, and D. C. Martin, J. Biomed. Mater. Res. Part A 83A, 636 (2007).

  6. 6

    6L. Yao, N. O’Brien, A. Windebank, and A. Pandit, J. Biomed. Mater. Res., Part B: Appl. Biomater. 90B, 483 (2009).

  7. 7

    C. T. Chalfoun, G. A. Wirth, and G. R. D. Evans, J. Cell. Mol. Med. 10, 309 (2006).

  8. 8

    R. Langer and J. P. Vacanti, Science 260, 920 (1993).

  9. 9

    P. Sangsanoh, S. Waleetorncheepsawat, O. Suwantong, P. Wutticharoenmongkol, O. Weeranantanapan, B. Chuenjitbuntaworn, P. Cheepsunthorn, P. Pavasant, and P. Supaphol, Biomacromolecules 8, 1587 (2007).

  10. 10

    T. B. Bini, S. J. Gao, T. C. Tan, S. Wang, A. Lim, L. B. Hai, and S. Ramakrishna, Nanotechnology 15, 1459 (2004).

  11. 11

    J. M. Corey, D. Y. Lin, D. C. Martin, and E. L. Feldman, Ann. Neurol. 58, S 65 (2005).

  12. 12

    E. C. Tsai, P. D. Dalton, M. S. Shoichet, and C. H. Tator, Biomaterials 27, 519 (2006).

  13. 13

    H. W. Ma, J. Hyun, Z. P. Zhang, T. P. Beebe, and A. Chilkoti, Adv. Funct. Mater. 15, 529 (2005).

  14. 14

    R. L. Waddell, K. G. Marra, K. L. Collins, J. T. Leung, and J. S. Doctor, Biotechnol. Prog. 19, 1767 (2003).

  15. 15

    H. Q. Cao, T. Liu, and S. Y. Chew, Adv. Drug Delivery Rev. 61, 1055 (2009).

  16. 16

    S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, Biomed. Mater. 3, 034002 (2008).

  17. 17

    A. Greiner and J. H. Wendorff, Angew. Chem., Int. Ed. 46, 5670 (2007).

  18. 18

    W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res. 60, 613 (2002).

  19. 19

    D. Li and Y. N. Xia, Adv. Mater. 16, 1151 (2004).

  20. 20

    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).

  21. 21

    J. W. Xie, M. R. MacEwan, X. R. Li, S. E. Sakiyama-Elbert, and Y. N. Xia, ACS Nano 3, 1151 (2009).

  22. 22

    F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Biomaterials 26, 2603 (2005).

  23. 23

    W. S. Li, Y. Guo, H. Wang, D. J. Shi, C. F. Liang, Z. P. Ye, F. Qing, and J. Gong, J. Mater. Sci.: Mater. Med. 19, 847 (2008).

  24. 24

    D. R. Nisbet, L. M. Y. Yu, T. Zahir, J. S. Forsythe, and M. S. Shoichet, J. Biomater. Sci., Polym. Ed. 19, 623 (2008).

  25. 25

    H. S. Yoo, T. G. Kim, and T. G. Park, Adv. Drug Delivery Rev. 61, 1033 (2009).

  26. 26

    W. Mattanavee, O. Suwantong, S. Puthong, T. Bunaprasert, V. P. Hoven, and P. Supaphol, ACS App. Mater. Interfaces 1, 1076 (2009).

  27. 27

    M. Y. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Biomaterials 27, 2705 (2006).

  28. 28

    L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, and S. Ramakrishna, Biomaterials 29, 4532 (2008).

  29. 29

    M. Li, M. J. Mondrinos, X. Chen, M. R. Gandhi, F. K. Ko, and P. I. Lelkes, J. Biomed. Mater. Res. Part A 79A, 963 (2006).

  30. 30

    E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, and J. Mey, Biomaterials 28, 3012 (2007).

  31. 31

    R. A. Neal, S. G. McClugage, M. C. Link, L. S. Sefcik, R. C. Ogle, and E. A. Botchwey, Tissue Eng. 15, 11 (2009).

  32. 32

    L. A. Greene and A. S. Tischler, Proc. Natl. Acad. Sci. U.S.A. 73, 2424 (1976).

  33. 33

    H. S. Koh, T. Yong, C. K. Chan, and S. Ramakrishna, Biomaterials 29, 3574 (2008).

  34. 34

    C. E. Ayres, B. S. Jha, H. Meredith, J. R. Bowman, G. L. Bowlin, S. C. Henderson, and D. G. Simpson, J. Biomater. Sci., Polym. Ed. 19, 603 (2008).

  35. 35

    S. Y. Chew, R. Mi, A. Hoke, and K. W. Leong, Biomaterials 29, 653 (2008).

  36. 36

    E. D. Yildirim, R. Besunder, D. Pappas, F. Allen, S. Güceri, and W. Sun, Biofabrication 2, 014109 (2010).

  37. 37

    M. P. Prabhakaran, J. Venugopal, C. K. Chan, and S. Ramakrishna, Nanotechnology 19, 455102 (2008).

  38. 38

    See supplementary material at http://dx.doi.org/10.1116/1.3526140 for preparation and analysis details.

  39. 39

    B. Wang, M. E. Mullins, J. M. Cregg, C. W. McCarthy, and R. J. Gilbert, Acta Biomater. 6, 2970 (2010).

  40. 40

    J. Y. Lee, C. A. Bashur, N. Gomez, A. S. Goldstein, and C. E. Schmidt, J. Biomed. Mater. Res. Part A 92A, 378 (2010).

  41. 41

    S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, Anal. Biochem. 178, 408 (1989).

  42. 42

    L. C. Shriver-Lake, B. Donner, R. Edelstein, K. Breslin, S. K. Bhatia, and F. S. Ligler, Biosens. Bioelectron. 12, 1101 (1997).

  43. 43

    Z. H. Wang and G. Jin, J. Immunol. Methods 285, 237 (2004).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article