Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Surface-modified nanofibrous biomaterial bridge for the enhancement and control of neurite outgrowth


Biomaterial bridges constructed from electrospun fibers offer a promising alternative to traditional nerve tissue regeneration substrates. Aligned and unaligned polycaprolactone (PCL) electrospun fibers were prepared and functionalized with the extracellular matrix proteins collagen and laminin using covalent and physical adsorption attachment chemistries. The effect of the protein modified and native PCL nanofiber scaffolds on cell proliferation, neurite outgrowth rate, and orientation was examined with neuronlike PC12 cells. All protein modified scaffolds showed enhanced cellular adhesion and neurite outgrowth compared to unmodified PCL scaffolds. Neurite orientation was found to be in near perfect alignment with the fiber axis for cells grown on aligned fibers, with difference angles of less than 7o from the fiber axis, regardless of the surface chemistry. The bioavailability of PCL fibers with covalently attached laminin was found to be identical to that of PCL fibers with physically adsorbed laminin, indicating that the covalent chemistry did not change the protein conformation into a less active form and the covalent attachment of protein is a suitable method for enhancing the biocompatibility of tissue engineering scaffolds. a) Electronic mail:


  1. 1

    R. V. Bellamkonda, Biomaterials 27, 3515 (2006).

    CAS  Google Scholar 

  2. 2

    X. J. Wen and P. A. Tresco, J. Biomed. Mater. Res. Part A 76A, 626 (2006).

    Article  CAS  Google Scholar 

  3. 3

    L. J. Zhang and T. J. Webster, Nanotoday 4, 66 (2009).

    CAS  Google Scholar 

  4. 4

    C. E. Schmidt and J. B. Leach, Annu. Rev. Biomed. Eng. 5, 293 (2003).

    Article  CAS  Google Scholar 

  5. 5

    J. M. Corey, D. Y. Lin, K. B. Mycek, Q. Chen, S. Samuel, E. L. Feldman, and D. C. Martin, J. Biomed. Mater. Res. Part A 83A, 636 (2007).

    Article  CAS  Google Scholar 

  6. 6

    6L. Yao, N. O’Brien, A. Windebank, and A. Pandit, J. Biomed. Mater. Res., Part B: Appl. Biomater. 90B, 483 (2009).

    Article  CAS  Google Scholar 

  7. 7

    C. T. Chalfoun, G. A. Wirth, and G. R. D. Evans, J. Cell. Mol. Med. 10, 309 (2006).

    Article  CAS  Google Scholar 

  8. 8

    R. Langer and J. P. Vacanti, Science 260, 920 (1993).

    Article  CAS  Google Scholar 

  9. 9

    P. Sangsanoh, S. Waleetorncheepsawat, O. Suwantong, P. Wutticharoenmongkol, O. Weeranantanapan, B. Chuenjitbuntaworn, P. Cheepsunthorn, P. Pavasant, and P. Supaphol, Biomacromolecules 8, 1587 (2007).

    Article  CAS  Google Scholar 

  10. 10

    T. B. Bini, S. J. Gao, T. C. Tan, S. Wang, A. Lim, L. B. Hai, and S. Ramakrishna, Nanotechnology 15, 1459 (2004).

    Article  CAS  Google Scholar 

  11. 11

    J. M. Corey, D. Y. Lin, D. C. Martin, and E. L. Feldman, Ann. Neurol. 58, S 65 (2005).

    Google Scholar 

  12. 12

    E. C. Tsai, P. D. Dalton, M. S. Shoichet, and C. H. Tator, Biomaterials 27, 519 (2006).

    Article  CAS  Google Scholar 

  13. 13

    H. W. Ma, J. Hyun, Z. P. Zhang, T. P. Beebe, and A. Chilkoti, Adv. Funct. Mater. 15, 529 (2005).

    Article  CAS  Google Scholar 

  14. 14

    R. L. Waddell, K. G. Marra, K. L. Collins, J. T. Leung, and J. S. Doctor, Biotechnol. Prog. 19, 1767 (2003).

    Article  CAS  Google Scholar 

  15. 15

    H. Q. Cao, T. Liu, and S. Y. Chew, Adv. Drug Delivery Rev. 61, 1055 (2009).

    Article  CAS  Google Scholar 

  16. 16

    S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, Biomed. Mater. 3, 034002 (2008).

    Article  CAS  Google Scholar 

  17. 17

    A. Greiner and J. H. Wendorff, Angew. Chem., Int. Ed. 46, 5670 (2007).

    Article  CAS  Google Scholar 

  18. 18

    W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res. 60, 613 (2002).

    Article  CAS  Google Scholar 

  19. 19

    D. Li and Y. N. Xia, Adv. Mater. 16, 1151 (2004).

    Article  CAS  Google Scholar 

  20. 20

    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).

    Article  CAS  Google Scholar 

  21. 21

    J. W. Xie, M. R. MacEwan, X. R. Li, S. E. Sakiyama-Elbert, and Y. N. Xia, ACS Nano 3, 1151 (2009).

    Article  CAS  Google Scholar 

  22. 22

    F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Biomaterials 26, 2603 (2005).

    Article  CAS  Google Scholar 

  23. 23

    W. S. Li, Y. Guo, H. Wang, D. J. Shi, C. F. Liang, Z. P. Ye, F. Qing, and J. Gong, J. Mater. Sci.: Mater. Med. 19, 847 (2008).

    Article  CAS  Google Scholar 

  24. 24

    D. R. Nisbet, L. M. Y. Yu, T. Zahir, J. S. Forsythe, and M. S. Shoichet, J. Biomater. Sci., Polym. Ed. 19, 623 (2008).

    Article  CAS  Google Scholar 

  25. 25

    H. S. Yoo, T. G. Kim, and T. G. Park, Adv. Drug Delivery Rev. 61, 1033 (2009).

    Article  CAS  Google Scholar 

  26. 26

    W. Mattanavee, O. Suwantong, S. Puthong, T. Bunaprasert, V. P. Hoven, and P. Supaphol, ACS App. Mater. Interfaces 1, 1076 (2009).

    Article  CAS  Google Scholar 

  27. 27

    M. Y. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Biomaterials 27, 2705 (2006).

    Article  CAS  Google Scholar 

  28. 28

    L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, and S. Ramakrishna, Biomaterials 29, 4532 (2008).

    Article  CAS  Google Scholar 

  29. 29

    M. Li, M. J. Mondrinos, X. Chen, M. R. Gandhi, F. K. Ko, and P. I. Lelkes, J. Biomed. Mater. Res. Part A 79A, 963 (2006).

    Article  CAS  Google Scholar 

  30. 30

    E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, and J. Mey, Biomaterials 28, 3012 (2007).

    Article  CAS  Google Scholar 

  31. 31

    R. A. Neal, S. G. McClugage, M. C. Link, L. S. Sefcik, R. C. Ogle, and E. A. Botchwey, Tissue Eng. 15, 11 (2009).

    CAS  Google Scholar 

  32. 32

    L. A. Greene and A. S. Tischler, Proc. Natl. Acad. Sci. U.S.A. 73, 2424 (1976).

    Article  CAS  Google Scholar 

  33. 33

    H. S. Koh, T. Yong, C. K. Chan, and S. Ramakrishna, Biomaterials 29, 3574 (2008).

    Article  CAS  Google Scholar 

  34. 34

    C. E. Ayres, B. S. Jha, H. Meredith, J. R. Bowman, G. L. Bowlin, S. C. Henderson, and D. G. Simpson, J. Biomater. Sci., Polym. Ed. 19, 603 (2008).

    Article  CAS  Google Scholar 

  35. 35

    S. Y. Chew, R. Mi, A. Hoke, and K. W. Leong, Biomaterials 29, 653 (2008).

    Article  CAS  Google Scholar 

  36. 36

    E. D. Yildirim, R. Besunder, D. Pappas, F. Allen, S. Güceri, and W. Sun, Biofabrication 2, 014109 (2010).

    Article  Google Scholar 

  37. 37

    M. P. Prabhakaran, J. Venugopal, C. K. Chan, and S. Ramakrishna, Nanotechnology 19, 455102 (2008).

    Article  Google Scholar 

  38. 38

    See supplementary material at for preparation and analysis details.

  39. 39

    B. Wang, M. E. Mullins, J. M. Cregg, C. W. McCarthy, and R. J. Gilbert, Acta Biomater. 6, 2970 (2010).

    Article  CAS  Google Scholar 

  40. 40

    J. Y. Lee, C. A. Bashur, N. Gomez, A. S. Goldstein, and C. E. Schmidt, J. Biomed. Mater. Res. Part A 92A, 378 (2010).

    Article  CAS  Google Scholar 

  41. 41

    S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, Anal. Biochem. 178, 408 (1989).

    Article  CAS  Google Scholar 

  42. 42

    L. C. Shriver-Lake, B. Donner, R. Edelstein, K. Breslin, S. K. Bhatia, and F. S. Ligler, Biosens. Bioelectron. 12, 1101 (1997).

    Article  CAS  Google Scholar 

  43. 43

    Z. H. Wang and G. Jin, J. Immunol. Methods 285, 237 (2004).

    Article  CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zander, N.E., Orlicki, J.A., Rawlett, A.M. et al. Surface-modified nanofibrous biomaterial bridge for the enhancement and control of neurite outgrowth. Biointerphases 5, 149–158 (2010).

Download citation