Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Protein adsorption on and swelling of polyelectrolyte brushes: A simultaneous ellipsometry-quartz crystal microbalance study

Article metrics

  • 986 Accesses

  • 46 Citations

Abstract

With a coupled spectroscopic ellipsometry-quartz crystal microbalance with dissipation (QCM-D) experimental setup, quantitative information can be obtained about the amount of buffer components (water molecules and ions) coupled to a poly(acrylic acid) (PAA) brush surface in swelling and protein adsorption processes. PAA Guiselin brushes with more than one anchoring point per single polymer chain were prepared. For the swollen brushes a high amount of buffer was found to be coupled to the brush-solution interface in addition to the content of buffer inside the brush layer. Upon adsorption of bovine serum albumin the further incorporation of buffer molecules into the protein-brush layer was monitored at overall electrostatic attractive conditions [below the protein isolectric poimt (IEP)] and electrostatic repulsive conditions (above the protein IEP), and the shear viscosity of the combined polymer-protein layer was evaluated from QCM-D data. For adsorption at the “wrong side” of the IEP an incorporation of excess buffer molecules was observed, indicating an adjustment of charges in the combined polymer-protein layer. Desorption of protein at pH 7.6 led to a very high stretching of the polymer-protein layer with additional incorporation of high amounts of buffer, reflecting the increase of negative charges on the protein molecules at this elevated pH.

References

  1. 1

    T. P. Russell, Science 297, 964 (2002).

  2. 2

    M. A. Cohen Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Nature Mater. 9, 101 (2010).

  3. 3

    P. Uhlmann, L. Ionov, N. Houbenov, M. Nitschke, K. Grundke, M. Motornov, S. Minko, and M. Stamm, Prog. Org. Coat. 55, 168 (2006).

  4. 4

    R. Toomey and M. Tirrell, Annu. Rev. Phys. Chem. 59, 493 (2008).

  5. 5

    W. J. Brittain and S. Minko, J. Polym. Sci., Part A: Polym. Chem. 45, 3505 (2007).

  6. 6

    F. Zhou and W. T. S. Huck, Phys. Chem. Chem. Phys. 8, 3815 (2006).

  7. 7

    E. P. K. Currie, W. Norde, and M. A. Cohen Stuart, Adv. Colloid Interface Sci. 100–102, 205 (2003).

  8. 8

    E. P. K. Currie, A. B. Sieval, G. J. Fleer, and M. A. Cohen Stuart, Langmuir 16, 8324 (2000).

  9. 9

    S. S. Dukhin, R. Zimmermann, and C. Werner, J. Phys. Chem. B 111, 979 (2007).

  10. 10

    X. Guo and M. Ballauff, Phys. Rev. E 64, 051406 (2001).

  11. 11

    D. Aulich, O. Hoy, I. Luzinov, M. Brücher, R. Hergenröder, E. Bittrich, K.-J. Eichhorn, P. Uhlmann, M. Stamm, N. Esser, and K. Hinrichs, Langmuir 26, 12926 (2010).

  12. 12

    M. Ballauff and O. Borisov, Curr. Opin. Colloid Interface Sci. 11, 316 (2006).

  13. 13

    H. Zhang and J. Rühe, Macromolecules 38, 4855 (2005).

  14. 14

    S. Rosenfeldt, A. Wittemann, M. Ballauff, E. Breininger, J. Bolze, and M. Dingenouts, Phys. Rev. E 70, 061403 (2004).

  15. 15

    P. M. Biesheuvel, F. A. M. Leermakers, and M. A. Cohen Stuart, Phys. Rev. E 73, 011802 (2006).

  16. 16

    O. Hollmann, T. Gutberlet, and C. Czeslik, Langmuir 23, 1347 (2007).

  17. 17

    W. M. de Vos, P. M. Biesheuvel, A. de Keizer, J. M. Kleijn, and M. A. Cohen Stuart, Langmuir 24, 6575 (2008).

  18. 18

    W. M. de Vos, F. A. M. Leermakers, A. de Keizer, M. A. Cohen Stuart, and J. M. Kleijn, Langmuir 26, 249 (2010).

  19. 19

    K. Henzler, B. Haupt, K. Lauterbach, A. Wittemann, O. Borisov, and M. Ballauff, J. Am. Chem. Soc. 132, 3159 (2010).

  20. 20

    E. Bittrich, M. Kuntzsch, K.-J. Eichhorn, and P. Uhlmann, J. Polym. Sci., Part B: Polym. Phys. 48, 1606 (2010).

  21. 21

    C. Werner, K.-J. Eichhorn, K. Grundke, F. Simon, W. Grählert, and H.-J. Jacobasch, Colloids Surf., A 156, 3 (1999).

  22. 22

    S. Reichelt, K.-J. Eichhorn, D. Aulich, K. Hinrichs, N. Jain, D. Appelhans, and B. Voit, Colloids Surf., B 69, 169 (2009).

  23. 23

    J. A. de Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

  24. 24

    G. Sauerbrey, Z. Phys. 155, 206 (1959).

  25. 25

    M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).

  26. 26

    M. V. Voinova, M. Jonson, and B. Kasemo, J. Phys.: Condens. Matter 9, 7799 (1997).

  27. 27

    M. V. Voinova, M. Jonson, and B. Kasemo, Biosens. Bioelectron. 17, 835 (2002).

  28. 28

    H.-S. Lee and L. S. Penn, Macromolecules 41, 8124 (2008).

  29. 29

    M. Kaufmann, Y. Jia, L. Renner, S. Gupta, D. Kuckling, C. Werner, and T. Pompe, Soft Matter 6, 937 (2010).

  30. 30

    M. V. Gormally, R. K. McKibben, M. S. Johal, and C. R. D. Selassie, Langmuir 25, 10014 (2009).

  31. 31

    F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Scott, and H. Elwing, Anal. Chem. 73, 5796 (2001).

  32. 32

    K. B. Rodenhausen, M. Guericke, A. Sarkard, T. Hofmann, N. Ianno, M. Schubert, T. E. Tiwald, M. Solinsky, and M. Wagner, “Virtual separation approach to study porous ultra-thin films by combined spectroscopic ellipsometry and quartz crystal microbalance methods,” Thin Solid Films (in press).

  33. 33

    A. Domack, O. Prucker, J. Rühe, and D. Johannsmann, Phys. Rev. E 56, 680 (1997).

  34. 34

    T. J. Halthur and U. M. Elofsson, Langmuir 20, 1739 (2004).

  35. 35

    M. Aubouy, O. Guiselin, and E. Raphael, Macromolecules 29, 7261 (1996).

  36. 36

    E. Bittrich, D. Aulich, K.-J. Eichhorn, K. Hinrichs, P. Uhlmann, I. Luzinov, and M. Stamm, Polym. Mater. Sci. Eng. 101, 930 (2009).

  37. 37

    D. A. Buttry and M. D. Ward, Chem. Rev. (Washington, D.C.) 92, 1355 (1992).

  38. 38

    F. Soetewey, M. Rosseneu-Motreff, R. Lamote, and H. Peeters, J. Biochem. (Tokyo) 71, 705 (1972).

  39. 39

    D. E. Aspnes, Thin Solid Films 89, 249 (1982).

  40. 40

    H. Arwin, Appl. Spectrosc. 40, 313 (1986).

  41. 41

    See supplementary material at http://dx.doi.org/10.1116/1.3530841 for a comparison of the adsorbed protein amount as derived by using the de Feitjer equation with an alternative approach based on a colorimetric assay. Additionally the influence of ionic strength of the buffer at pH=5.2 on swelling of the brush is shown, and the frequency and dissipation shifts of the protein adsorption experiments are displayed.

  42. 42

    L. Lensun, T. A. Smith, and M. L. Gee, Langmuir 18, 9924 (2002).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article