Skip to main content

Journal for Biophysical Chemistry

Protein adsorption on and swelling of polyelectrolyte brushes: A simultaneous ellipsometry-quartz crystal microbalance study


With a coupled spectroscopic ellipsometry-quartz crystal microbalance with dissipation (QCM-D) experimental setup, quantitative information can be obtained about the amount of buffer components (water molecules and ions) coupled to a poly(acrylic acid) (PAA) brush surface in swelling and protein adsorption processes. PAA Guiselin brushes with more than one anchoring point per single polymer chain were prepared. For the swollen brushes a high amount of buffer was found to be coupled to the brush-solution interface in addition to the content of buffer inside the brush layer. Upon adsorption of bovine serum albumin the further incorporation of buffer molecules into the protein-brush layer was monitored at overall electrostatic attractive conditions [below the protein isolectric poimt (IEP)] and electrostatic repulsive conditions (above the protein IEP), and the shear viscosity of the combined polymer-protein layer was evaluated from QCM-D data. For adsorption at the “wrong side” of the IEP an incorporation of excess buffer molecules was observed, indicating an adjustment of charges in the combined polymer-protein layer. Desorption of protein at pH 7.6 led to a very high stretching of the polymer-protein layer with additional incorporation of high amounts of buffer, reflecting the increase of negative charges on the protein molecules at this elevated pH.


  1. 1

    T. P. Russell, Science 297, 964 (2002).

    Article  CAS  Google Scholar 

  2. 2

    M. A. Cohen Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Nature Mater. 9, 101 (2010).

    Article  CAS  Google Scholar 

  3. 3

    P. Uhlmann, L. Ionov, N. Houbenov, M. Nitschke, K. Grundke, M. Motornov, S. Minko, and M. Stamm, Prog. Org. Coat. 55, 168 (2006).

    Article  CAS  Google Scholar 

  4. 4

    R. Toomey and M. Tirrell, Annu. Rev. Phys. Chem. 59, 493 (2008).

    Article  CAS  Google Scholar 

  5. 5

    W. J. Brittain and S. Minko, J. Polym. Sci., Part A: Polym. Chem. 45, 3505 (2007).

    Article  CAS  Google Scholar 

  6. 6

    F. Zhou and W. T. S. Huck, Phys. Chem. Chem. Phys. 8, 3815 (2006).

    Article  CAS  Google Scholar 

  7. 7

    E. P. K. Currie, W. Norde, and M. A. Cohen Stuart, Adv. Colloid Interface Sci. 100–102, 205 (2003).

    Article  Google Scholar 

  8. 8

    E. P. K. Currie, A. B. Sieval, G. J. Fleer, and M. A. Cohen Stuart, Langmuir 16, 8324 (2000).

    Article  CAS  Google Scholar 

  9. 9

    S. S. Dukhin, R. Zimmermann, and C. Werner, J. Phys. Chem. B 111, 979 (2007).

    Article  CAS  Google Scholar 

  10. 10

    X. Guo and M. Ballauff, Phys. Rev. E 64, 051406 (2001).

    Article  CAS  Google Scholar 

  11. 11

    D. Aulich, O. Hoy, I. Luzinov, M. Brücher, R. Hergenröder, E. Bittrich, K.-J. Eichhorn, P. Uhlmann, M. Stamm, N. Esser, and K. Hinrichs, Langmuir 26, 12926 (2010).

    Article  CAS  Google Scholar 

  12. 12

    M. Ballauff and O. Borisov, Curr. Opin. Colloid Interface Sci. 11, 316 (2006).

    Article  CAS  Google Scholar 

  13. 13

    H. Zhang and J. Rühe, Macromolecules 38, 4855 (2005).

    Article  CAS  Google Scholar 

  14. 14

    S. Rosenfeldt, A. Wittemann, M. Ballauff, E. Breininger, J. Bolze, and M. Dingenouts, Phys. Rev. E 70, 061403 (2004).

    Article  CAS  Google Scholar 

  15. 15

    P. M. Biesheuvel, F. A. M. Leermakers, and M. A. Cohen Stuart, Phys. Rev. E 73, 011802 (2006).

    Article  Google Scholar 

  16. 16

    O. Hollmann, T. Gutberlet, and C. Czeslik, Langmuir 23, 1347 (2007).

    Article  CAS  Google Scholar 

  17. 17

    W. M. de Vos, P. M. Biesheuvel, A. de Keizer, J. M. Kleijn, and M. A. Cohen Stuart, Langmuir 24, 6575 (2008).

    Article  Google Scholar 

  18. 18

    W. M. de Vos, F. A. M. Leermakers, A. de Keizer, M. A. Cohen Stuart, and J. M. Kleijn, Langmuir 26, 249 (2010).

    Article  Google Scholar 

  19. 19

    K. Henzler, B. Haupt, K. Lauterbach, A. Wittemann, O. Borisov, and M. Ballauff, J. Am. Chem. Soc. 132, 3159 (2010).

    Article  CAS  Google Scholar 

  20. 20

    E. Bittrich, M. Kuntzsch, K.-J. Eichhorn, and P. Uhlmann, J. Polym. Sci., Part B: Polym. Phys. 48, 1606 (2010).

    Article  CAS  Google Scholar 

  21. 21

    C. Werner, K.-J. Eichhorn, K. Grundke, F. Simon, W. Grählert, and H.-J. Jacobasch, Colloids Surf., A 156, 3 (1999).

    Article  CAS  Google Scholar 

  22. 22

    S. Reichelt, K.-J. Eichhorn, D. Aulich, K. Hinrichs, N. Jain, D. Appelhans, and B. Voit, Colloids Surf., B 69, 169 (2009).

    Article  CAS  Google Scholar 

  23. 23

    J. A. de Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

    Article  Google Scholar 

  24. 24

    G. Sauerbrey, Z. Phys. 155, 206 (1959).

    Article  CAS  Google Scholar 

  25. 25

    M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).

    Article  CAS  Google Scholar 

  26. 26

    M. V. Voinova, M. Jonson, and B. Kasemo, J. Phys.: Condens. Matter 9, 7799 (1997).

    Article  CAS  Google Scholar 

  27. 27

    M. V. Voinova, M. Jonson, and B. Kasemo, Biosens. Bioelectron. 17, 835 (2002).

    Article  CAS  Google Scholar 

  28. 28

    H.-S. Lee and L. S. Penn, Macromolecules 41, 8124 (2008).

    Article  CAS  Google Scholar 

  29. 29

    M. Kaufmann, Y. Jia, L. Renner, S. Gupta, D. Kuckling, C. Werner, and T. Pompe, Soft Matter 6, 937 (2010).

    Article  CAS  Google Scholar 

  30. 30

    M. V. Gormally, R. K. McKibben, M. S. Johal, and C. R. D. Selassie, Langmuir 25, 10014 (2009).

    Article  CAS  Google Scholar 

  31. 31

    F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Scott, and H. Elwing, Anal. Chem. 73, 5796 (2001).

    Article  Google Scholar 

  32. 32

    K. B. Rodenhausen, M. Guericke, A. Sarkard, T. Hofmann, N. Ianno, M. Schubert, T. E. Tiwald, M. Solinsky, and M. Wagner, “Virtual separation approach to study porous ultra-thin films by combined spectroscopic ellipsometry and quartz crystal microbalance methods,” Thin Solid Films (in press).

  33. 33

    A. Domack, O. Prucker, J. Rühe, and D. Johannsmann, Phys. Rev. E 56, 680 (1997).

    Article  CAS  Google Scholar 

  34. 34

    T. J. Halthur and U. M. Elofsson, Langmuir 20, 1739 (2004).

    Article  CAS  Google Scholar 

  35. 35

    M. Aubouy, O. Guiselin, and E. Raphael, Macromolecules 29, 7261 (1996).

    Article  CAS  Google Scholar 

  36. 36

    E. Bittrich, D. Aulich, K.-J. Eichhorn, K. Hinrichs, P. Uhlmann, I. Luzinov, and M. Stamm, Polym. Mater. Sci. Eng. 101, 930 (2009).

    CAS  Google Scholar 

  37. 37

    D. A. Buttry and M. D. Ward, Chem. Rev. (Washington, D.C.) 92, 1355 (1992).

    CAS  Google Scholar 

  38. 38

    F. Soetewey, M. Rosseneu-Motreff, R. Lamote, and H. Peeters, J. Biochem. (Tokyo) 71, 705 (1972).

    CAS  Google Scholar 

  39. 39

    D. E. Aspnes, Thin Solid Films 89, 249 (1982).

    Article  CAS  Google Scholar 

  40. 40

    H. Arwin, Appl. Spectrosc. 40, 313 (1986).

    Article  CAS  Google Scholar 

  41. 41

    See supplementary material at for a comparison of the adsorbed protein amount as derived by using the de Feitjer equation with an alternative approach based on a colorimetric assay. Additionally the influence of ionic strength of the buffer at pH=5.2 on swelling of the brush is shown, and the frequency and dissipation shifts of the protein adsorption experiments are displayed.

  42. 42

    L. Lensun, T. A. Smith, and M. L. Gee, Langmuir 18, 9924 (2002).

    Article  CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bittrich, E., Rodenhausen, K.B., Eichhorn, KJ. et al. Protein adsorption on and swelling of polyelectrolyte brushes: A simultaneous ellipsometry-quartz crystal microbalance study. Biointerphases 5, 159–167 (2010).

Download citation