Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Nanopatterning by block copolymer micelle nanolithography and bioinspired applications

Abstract

This comprehensive overview of block copolymer micelle nanolithography (BCMN) will discuss the synthesis of inorganic nanoparticle arrays by means of micellar diblock copolymer approach and the resulting experimental control of individual structural parameters of the nanopattern, e.g., particle density and particle size. Furthermore, the authors will present a combinational approach of BCMN with conventional fabrication methods, namely, photolithography and electron beam lithography, which combines the advantages of high-resolution micronanopatterning with fast sample processing rates. In addition, the authors will demonstrate how these nanoparticle assemblies can be transferred to polymer substrates with a wide range of elasticity. In the second part of this report the authors will introduce some of the most intriguing applications of BCMN in biology and materials science: The authors will demonstrate how nanoparticle arrays may be used as anchor points to pattern functional proteins with single molecule resolution for studying cellular adhesion and present a technological roadmap to high-performance nanomaterials by highlighting recent applications for biomimetic optics and nanowires. nt]mis|These authors contributed equally to this work.

References

  1. 1

    R. P. Feynman, Eng. Sci. 23, 22 (1960).

    Google Scholar 

  2. 2

    R. F. W. Pease, J. Vac. Sci. Technol. B 10, 278 (1992).

    CAS  Article  Google Scholar 

  3. 3

    Royal Society, “Nancoscience and Nanotechnologies: Opportunities and Uncertainties,” A Report by The Royal Society and The Royal Academy of Engineering, London, July 2004.

    Google Scholar 

  4. 4

    G. M. Whitesides, Small 1, 172 (2005).

    CAS  Article  Google Scholar 

  5. 5

    D. Brambley, D. Martin, and P. D. Prewett, Adv. Mater. Opt. Electron. 4, 55 (1994).

    CAS  Article  Google Scholar 

  6. 6

    W. M. Moreau, Semiconductor Lithography: Principles and Materials (Plenum, New York, 1988).

    Google Scholar 

  7. 7

    M. Feldman and J. Sun, J. Vac. Sci. Technol. B 10, 3173 (1992).

    CAS  Article  Google Scholar 

  8. 8

    J. P. Silverman, J. Vac. Sci. Technol. B 15, 2117 (1997).

    CAS  Article  Google Scholar 

  9. 9

    R. Menon, A. Patel, D. Gil, and H. I. Smith, Mater. Today 8, 26 (2005).

    CAS  Article  Google Scholar 

  10. 10

    S. Matsui, Y. Kojima, Y. Ochiai, and T. Honda, J. Vac. Sci. Technol. B 9, 2622 (1991).

    CAS  Article  Google Scholar 

  11. 11

    J. Melngailis, J. Vac. Sci. Technol. B 5, 469 (1987).

    CAS  Article  Google Scholar 

  12. 12

    G. L. T. Chiu and J. M. Shaw, IBM J. Res. Dev. 41, 3 (1997).

    Article  Google Scholar 

  13. 13

    S. J. Holmes, P. H. Mitchell, and M. C. Hakey, IBM J. Res. Dev. 41, 7 (1997).

    CAS  Article  Google Scholar 

  14. 14

    K. J. Edler, Philos. Trans. R. Soc. London, Ser. A 362, 2635 (2004).

    CAS  Article  Google Scholar 

  15. 15

    D. Philip and J. F. Stoddart, Angew. Chem., Int. Ed. Engl. 35, 1155 (1996).

    Google Scholar 

  16. 16

    G. M. Whitesides, Nat. Biotechnol. 21, 1161 (2003).

    CAS  Article  Google Scholar 

  17. 17

    G. M. Whitesides and B. Grzybowski, Science 295, 2418 (2002).

    CAS  Article  Google Scholar 

  18. 18

    B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe, and G. M. Whitesides, Annu. Rev. Mater. Res. 34, 339 (2004).

    CAS  Article  Google Scholar 

  19. 19

    C. J. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 105, 1103 (2005).

    CAS  Google Scholar 

  20. 20

    A. Ulman, Chem. Rev. (Washington, D.C.) 96, 1533 (1996).

    CAS  Google Scholar 

  21. 21

    C. T. Black, R. Ruiz, G. Breyta, J. Y. Cheng, M. E. Colburn, K. W. Guarini, H.-C. Kim, and Y. Zhang, IBM J. Res. Dev. 51, 605 (2007).

    CAS  Article  Google Scholar 

  22. 22

    I. W. Hamley, Nanotechnology 14, R39 (2003).

    CAS  Article  Google Scholar 

  23. 23

    I. W. Hamley, Angew. Chem., Int. Ed. 42, 1692 (2003).

    CAS  Article  Google Scholar 

  24. 24

    C. Park, J. Yoon, and E. L. Thomas, Polymer 44, 6725 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. 12, 693 (2000).

    CAS  Article  Google Scholar 

  26. 26

    S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, Small 2, 458 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Y. Yin, Y. Lu, B. Gates, and Y. Xia, J. Am. Chem. Soc. 123, 8718 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Y. Yin and Y. Xia, Adv. Mater. 13, 267 (2001).

    CAS  Article  Google Scholar 

  30. 30

    J. S. Ahn, P. T. Hammond, M. F. Rubner, and I. Lee, Colloids Surf., A 259, 45 (2005).

    CAS  Article  Google Scholar 

  31. 31

    P. T. Hammond, Surface-Directed Colloid Patterning: Selective Deposition via Electrostatic and Secondary Interactions; in Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles, edited by F. Caruso (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).

    Google Scholar 

  32. 32

    G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 99, 1823 (1999).

    CAS  Google Scholar 

  34. 34

    Y. Xia and G. M. Whitesides, Angew. Chem. 110, 568 (1998).

    Article  Google Scholar 

  35. 35

    R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, Science 283, 661 (1999).

    CAS  Article  Google Scholar 

  36. 36

    K. Salaita, Y. Wang, and C. A. Mirkin, Nat. Nanotechnol. 2, 145 (2007).

    CAS  Article  Google Scholar 

  37. 37

    K. Wadu-Mesthrige, S. Xu, N. A. Amro, and G. Liu, Langmuir 15, 8580 (1999).

    CAS  Article  Google Scholar 

  38. 38

    S. Xu, S. Miller, P. E. Laibinis, and G. Liu, Langmuir 15, 7244 (1999).

    CAS  Article  Google Scholar 

  39. 39

    M. K. Herndon, R. T. Collins, R. E. Hollingsworth, P. R. Larson, and M. B. Johnson, Appl. Phys. Lett. 74, 141 (1999).

    CAS  Article  Google Scholar 

  40. 40

    L. J. Guo, Adv. Mater. 19, 495 (2007).

    CAS  Article  Google Scholar 

  41. 41

    M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, and J. P. Spatz, ChemPhysChem 5, 383 (2004).

    CAS  Article  Google Scholar 

  42. 42

    R. Glass, M. Arnold, J. Blümmel, A. Küller, M. Möller, and J. P. Spatz, Adv. Funct. Mater. 13, 569 (2003).

    CAS  Article  Google Scholar 

  43. 43

    T. Lohmüller, E. Bock, and J. P. Spatz, Adv. Mater. 20, 2297 (2008).

    Article  CAS  Google Scholar 

  44. 44

    P. Liu and J. Ding, Langmuir 26, 492 (2010).

    CAS  Article  Google Scholar 

  45. 45

    T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, Nanotechnology 21, 145309 (2010).

    Article  CAS  Google Scholar 

  46. 46

    R. Glass, M. Arnold, E.-A. Cavalcanti-Adam, J. Blümmel, C. Haferkemper, C. Dodd, and J. P. Spatz, New J. Phys. 6, 101 (2004).

    Article  CAS  Google Scholar 

  47. 47

    B. Gorzolnik, P. Mela, and M. Möller, Nanotechnology 17, 5027 (2006).

    CAS  Article  Google Scholar 

  48. 48

    P. Mela, B. Gorzolnik, M. Bueckins, A. Mourran, J. Mayer, and M. Möller, Small 3, 1368 (2007).

    CAS  Article  Google Scholar 

  49. 49

    J. Chen, P. Mela, M. Möller, and M. Lensen, ACS Nano 3, 1451 (2009).

    CAS  Article  Google Scholar 

  50. 50

    D. Aydin, M. Schwieder, I. Louban, S. Knoppe, J. Ulmer, T. L. Haas, H. Walczak, and J. P. Spatz, Small 5, 1014 (2009).

    CAS  Article  Google Scholar 

  51. 51

    D. Aydin et al., Langmuir 26, 14572 (2010).

    Article  CAS  Google Scholar 

  52. 52

    S. V. Graeter, J. Huang, N. Perschmann, M. López-García, H. Kessler, J. Ding, and J. P. Spatz, Nano Lett. 7, 1413 (2007).

    CAS  Article  Google Scholar 

  53. 53

    T. Wolfram, F. Belz, T. Schoen, and J. P. Spatz, BioInterphases 2, 44 (2007).

    CAS  Article  Google Scholar 

  54. 54

    M. Arnold et al., Nano Lett. 8, 2063 (2008).

    CAS  Article  Google Scholar 

  55. 55

    M. Arnold, M. Schwieder, J. Blümmel, E. A. Cavalcanti-Adam, M. López-Garcia, H. Kessler, B. Geiger, and J. P. Spatz, Soft Matter 5, 72 (2009).

    CAS  Article  Google Scholar 

  56. 56

    E. A. Cavalcanti-Adam, A. Micoulet, J. Blümmel, J. Auernheimer, H. Kessler, and J. P. Spatz, Eur. J. Cell Biol. 85, 219 (2006).

    CAS  Article  Google Scholar 

  57. 57

    E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, and J. P. Spatz, Biophys. J. 92, 2964 (2007).

    CAS  Article  Google Scholar 

  58. 58

    C. Selhuber-Unkel, T. Erdmann, M. Lopez-Garcia, H. Kessler, U. S. Schwarz, and J. P. Spatz, Biophys. J. 98, 543 (2010).

    CAS  Article  Google Scholar 

  59. 59

    C. Selhuber-Unkel, M. Lopez-Garcia, H. Kessler, and J. P. Spatz, Biophys. J. 95, 5424 (2008).

    CAS  Article  Google Scholar 

  60. 60

    B. Geiger, J. P. Spatz, and A. D. Bershadsky, Nat. Rev. Mol. Cell Biol. 10, 21 (2009).

    CAS  Article  Google Scholar 

  61. 61

    E. A. Cavalcanti-Adam, D. Aydin, V. C. Hirschfeld-Warneken, and J. P. Spatz, HFSP J. 2, 276 (2008).

    CAS  Article  Google Scholar 

  62. 62

    V. Hirschfeld-Warneken, M. Arnold, A. Cavalcanti-Adam M. Lopez-Garcìa, H. Kessler, and J. Spatz, Eur. J. Cell Biol. 87, 743 (2008).

    CAS  Article  Google Scholar 

  63. 63

    S. Jaehrling, K. Thelen, T. Wolfram, and G. Pollerberg, Nano Lett. 9, 4115 (2009).

    CAS  Article  Google Scholar 

  64. 64

    K. Thelen, T. Wolfram, B. Maier, S. Jährling, A. Tinazli, J. Piehler, J. P. Spatz, and G. E. Pollerberg, Soft Matter 3, 1486 (2007).

    CAS  Article  Google Scholar 

  65. 65

    T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).

    Article  CAS  Google Scholar 

  66. 66

    M. R. Goncalves and O. Marti, New J. Phys. 5, 160 (2003).

    Article  Google Scholar 

  67. 67

    B. Mbenkum, E. Barrena, X. Zhang, M. Kelsch, and H. Dosch, Nano Lett. 6, 2852 (2006).

    CAS  Article  Google Scholar 

  68. 68

    E. Barrena, X. N. Zhang, B. N. Mbenkum, T. Lohmüller, T. N. Krauss, M. Kelsch, P. A. van Aken, J. P. Spatz, and H. Dosch, ChemPhysChem 9, 1114 (2008).

    CAS  Article  Google Scholar 

  69. 69

    T. N. Krauss, E. Barrena, T. Lohmüller, M. Kelsch, A. Breitling, P. A. van Aken, J. P. Spatz, and H. Dosch, Chem. Mater. 21, 5010 (2009).

    CAS  Article  Google Scholar 

  70. 70

    M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Science 276, 1401 (1997).

    CAS  Article  Google Scholar 

  71. 71

    R. Glass, M. Möller, and J. P. Spatz, Nanotechnology 14, 1153 (2003).

    CAS  Article  Google Scholar 

  72. 72

    J. P. Spatz, S. Mössmer, C. Hartmann, and M. Möller, Langmuir 16, 407 (2000).

    CAS  Article  Google Scholar 

  73. 73

    L. Leibler, Macromolecules 13, 1602 (1980).

    CAS  Article  Google Scholar 

  74. 74

    Z. Gao and A. Eisenberg, Macromolecules 26, 7353 (1993).

    CAS  Article  Google Scholar 

  75. 75

    J. Israelachvili, Intramolecular and Surface Forces, 2nd ed. (Academic Press, London, 1992).

    Google Scholar 

  76. 76

    J. Israelachvili, Langmuir 10, 3774 (1994).

    CAS  Article  Google Scholar 

  77. 77

    D. Izzo and C. M. Marques, Macromolecules 26, 7189 (1993).

    CAS  Article  Google Scholar 

  78. 78

    J. P. Spatz, A. Röscher, S. Sheiko, G. Krausch, and M. Möller, Adv. Mater. 7, 731 (1995).

    CAS  Article  Google Scholar 

  79. 79

    J. P. Spatz, S. Sheiko, and M. Möller, Macromolecules 29, 3220 (1996).

    CAS  Article  Google Scholar 

  80. 80

    J. P. Spatz, S. Mössmer, and M. Möller, Chem.-Eur. J. 2, 1552 (1996).

    CAS  Article  Google Scholar 

  81. 81

    S. Mössmer, J. P. Spatz, M. Möller, T. Aberle, J. Schmidt, and W. Burchard, Macromolecules 33, 4791 (2000).

    Article  CAS  Google Scholar 

  82. 82

    G. Kästle et al., Adv. Funct. Mater. 13, 853 (2003).

    Article  CAS  Google Scholar 

  83. 83

    A. Ethirajan et al., Adv. Mater. 19, 406 (2007).

    CAS  Article  Google Scholar 

  84. 84

    J. P. Wilcoxon and B. L. Abrams, Chem. Soc. Rev. 35, 1162 (2006).

    CAS  Article  Google Scholar 

  85. 85

    A. N. Shipway, E. Katz, and I. Willner, ChemPhysChem 1, 18 (2000).

    CAS  Article  Google Scholar 

  86. 86

    U. V. M. Kreibig, Optical Properties of Metal Clusters (Springer, Heidelberg, 1995).

    Google Scholar 

  87. 87

    C. Langhammer, Z. Yuan, I. Zoric, and B. Kasemo, Nano Lett. 6, 833 (2006).

    CAS  Article  Google Scholar 

  88. 88

    S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).

    CAS  Article  Google Scholar 

  89. 89

    P. Mulvaney, Langmuir 12, 788 (1996).

    CAS  Article  Google Scholar 

  90. 90

    M. Schnippering, M. Carrara, A. Foelske, R. Kötz, and D. J. Fermín, Phys. Chem. Chem. Phys. 9, 725 (2007).

    CAS  Article  Google Scholar 

  91. 91

    J. Sharma, J. P. Vivek, and K. P. Vijayamohanan, J. Nanosci. Nanotechnol. 6, 3464 (2006).

    CAS  Article  Google Scholar 

  92. 92

    J. Lu, S. S. Yi, T. Kopley, C. Qian, J. Liu, and G. Erdogan, J. Phys. Chem. B 110, 6655 (2006).

    CAS  Article  Google Scholar 

  93. 93

    D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi, Nano Lett. 6, 2642 (2006).

    CAS  Article  Google Scholar 

  94. 94

    P. Hanarp, M. Kaell, and D. S. Sutherland, J. Phys. Chem. B 107, 5768 (2003).

    CAS  Article  Google Scholar 

  95. 95

    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    CAS  Article  Google Scholar 

  96. 96

    L. M. Liz-Marzán, Langmuir 22, 32 (2006).

    Article  CAS  Google Scholar 

  97. 97

    W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).

    CAS  Article  Google Scholar 

  98. 98

    N. Walter, C. Selhuber, H. Kessler, and J. P. Spatz, Nano Lett. 6, 398 (2006).

    CAS  Article  Google Scholar 

  99. 99

    S. Krishnamoorthy, P. Raphaël, J. Brugger, H. Heinzelmann, and C. Hinderling, Adv. Funct. Mater. 16, 1469 (2006).

    CAS  Article  Google Scholar 

  100. 100

    J. Bansmann, S. Kielbassa, H. Hoster, F. Weigl, H. G. Boyen, U. Wiedwald, P. Ziemann, and R. J. Behm, Langmuir 23, 10150 (2007).

    CAS  Article  Google Scholar 

  101. 101

    M. Möller, C. S. Hartmann, J. Sihler, S. Fricker, V. Z. H. Chan, and J. P. Spatz, Polym. Mater. Sci. Eng. 90, 255 (2004).

    Google Scholar 

  102. 102

    S. Förster and T. Plantenberg, Angew. Chem., Int. Ed. 41, 688 (2002).

    Article  Google Scholar 

  103. 103

    M. Arnold, Dissertation, University of Heidelberg, 2005.

    Google Scholar 

  104. 104

    A. A. Darhuber, S. M. Troian, S. M. Miller, and S. Wagner, J. Appl. Phys. 87, 7768 (2000).

    CAS  Article  Google Scholar 

  105. 105

    K. R. Brown and M. J. Natan, Langmuir 14, 726 (1998).

    CAS  Article  Google Scholar 

  106. 106

    J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951).

    Article  Google Scholar 

  107. 107

    G. Stremsdoerfer, J. R. Martin, and P. Clechet, Proc.-Electrochem. Soc. 92-93, 305 (1992).

    Google Scholar 

  108. 108

    J. P. Spatz, Angew. Chem., Int. Ed. 41, 3359 (2002).

    CAS  Article  Google Scholar 

  109. 109

    S. H. Yun, B. H. Sohn, J. C. Jung, W. C. Zin, M. Ree, and J. W. Park, Nanotechnology 17, 450 (2006).

    CAS  Article  Google Scholar 

  110. 110

    J. P. Spatz, V. Z. H. Chan, S. Mößmer, F.-M. Kamm, A. Plettl, P. Ziemann, and M. Möller, Adv. Mater. 14, 1827 (2002).

    CAS  Article  Google Scholar 

  111. 111

    M. M. Stevens and J. H. George, Science 310, 1135 (2005).

    CAS  Article  Google Scholar 

  112. 112

    C. A. Mirkin and C. M. Niemeyer, Nanobiotechnology II: More Concepts and Applications (Wiley-VCH, New York, 2007).

    Google Scholar 

  113. 113

    C. M. Niemeyer and C. A. Mirkin, Nanobiotechnology: Concepts, Applications and Perspectives (Wiley-VCH, New York, 2004).

    Google Scholar 

  114. 114

    I. Willner, R. Baron, and B. Willner, Biosens. Bioelectron. 22, 1841 (2007).

    CAS  Article  Google Scholar 

  115. 115

    K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, Science 295, 1702 (2002).

    CAS  Article  Google Scholar 

  116. 116

    M. van den Heuvel and C. Dekker, Science 317, 333 (2007).

    Article  CAS  Google Scholar 

  117. 117

    S. Howorka, S. Cheley, and H. Bayley, Nat. Biotechnol. 19, 636 (2001).

    CAS  Article  Google Scholar 

  118. 118

    C. R. Martin and P. Kohli, Nat. Rev. Drug Discovery 2, 29 (2003).

    CAS  Article  Google Scholar 

  119. 119

    L. M. Adleman, Science 266, 1021 (1994).

    CAS  Article  Google Scholar 

  120. 120

    M. A. Firestone, M. L. Shank, S. G. Sligar, and P. W. Bohn, J. Am. Chem. Soc. 118, 9033 (1996).

    CAS  Article  Google Scholar 

  121. 121

    J. Groll, K. Albrecht, P. Gasteier, S. Riethmüller, U. Ziener, and M. Möller, ChemBioChem 6, 1782 (2005).

    CAS  Article  Google Scholar 

  122. 122

    J. Blümmel, N. Perschmann, D. Aydin, J. Drinjakovic, T. Surrey, M. Lopez-Garcia, H. Kessler, and J. P. Spatz, Biomaterials 28, 4739 (2007).

    Article  CAS  Google Scholar 

  123. 123

    G. Kenausis, J. Voros, D. Elbert, N. Huang, R. Hofer, L. Ruiz-Taylor, M. Textor, J. A. Hubbell, and N. D. Spencer, J. Phys. Chem. B 104, 3298 (2000).

    CAS  Article  Google Scholar 

  124. 124

    R. O. Hynes, Cell 48, 549 (1987).

    CAS  Article  Google Scholar 

  125. 125

    E. Ruoslahti, Annu. Rev. Cell Dev. Biol. 12, 697 (1996).

    CAS  Article  Google Scholar 

  126. 126

    L. Y. Koo, D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith, J. Cell. Sci. 115, 1423 (2002).

    CAS  Google Scholar 

  127. 127

    G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells, and L. G. Griffith, J. Cell. Sci. 113, 1677 (2000).

    CAS  Google Scholar 

  128. 128

    S. P. Massia and J. A. Hubbell, J. Cell Biol. 114, 1089 (1991).

    CAS  Article  Google Scholar 

  129. 129

    J. P. Spatz and B. Geiger, Methods Cell Biol. 83, 89 (2007).

    CAS  Article  Google Scholar 

  130. 130

    O. Akbulut, J. M. Jung, R. D. Bennett, Y. Hu, H.-T. Jung, R. E. Cohen, A. M. Mayes, and F. Stellacci, Nano Lett. 7, 3493 (2007).

    CAS  Article  Google Scholar 

  131. 131

    L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, Adv. Funct. Mater. 13, 271 (2003).

    CAS  Article  Google Scholar 

  132. 132

    J. P. Spatz, P. Eibeck, S. Mössmer, M. Möller, T. Herzog, and P. Ziemann, Adv. Mater. 10, 849 (1998).

    CAS  Article  Google Scholar 

  133. 133

    M. Haupt, S. Miller, R. Glass, M. Arnold, R. Sauer, K. Thonke, M. Möller, and J. P. Spatz, Adv. Mater. 15, 829 (2003).

    CAS  Article  Google Scholar 

  134. 134

    K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, J. Y. Jho, M. Tuominen, C. J. Hawker, and T. P. Russell, Nano Lett. 2, 933 (2002).

    CAS  Article  Google Scholar 

  135. 135

    D. P. DiVincenzo, Science 270, 255 (1995).

    CAS  Article  Google Scholar 

  136. 136

    M. Ibn-Elhaj and M. Schadt, Nature (London) 410, 796 (2001).

    CAS  Article  Google Scholar 

  137. 137

    S. Walheim, E. Schaeffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).

    CAS  Article  Google Scholar 

  138. 138

    S. Ahl, P. J. Cameron, J. Liu, W. Knoll, J. Erlebacher, and F. Yu, Plasmonics 3, 13 (2008).

    CAS  Article  Google Scholar 

  139. 139

    T. Lohmüller et al., J. Micromech. Microeng. 18, 115011 (2008).

    Article  CAS  Google Scholar 

  140. 140

    G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).

    CAS  Article  Google Scholar 

  141. 141

    M. Steinhart, J. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, and U. Gösele, Science 296, 1997 (2002).

    CAS  Article  Google Scholar 

  142. 142

    A. Birner, R. Wehrspohn, U. Gösele, and K. Busch, Adv. Mater. 13, 377 (2001).

    CAS  Article  Google Scholar 

  143. 143

    M. Haupt, S. Miller, A. Ladenburger, R. Sauer, K. Thonke, J. P. Spatz, S. Riethmüller, M. Möller, and F. Banhart, J. Appl. Phys. 91, 6057 (2002).

    CAS  Article  Google Scholar 

  144. 144

    T. Lohmüller, R. Brunner, and J. P. Spatz, Improved Properties of Optical Surfaces by Following the Example of the Moth Eye (INTECH, Croatia, 2010).

    Google Scholar 

  145. 145

    E. Yoon, R. Singh, H. Kong, B. Kim, D.-H. Kim, H. E. Jeong, and K. Y. Suh, Tribol. Lett. 21, 31 (2006).

    CAS  Article  Google Scholar 

  146. 146

    C. H. Choi, S. Heydarkhan-Hagvall, B. M. Wu, J. C. Dunn, R. E. Beygui, and C. J. Kim, J. Biomed. Mater. Res. Part A 89A, 804 (2009).

    CAS  Article  Google Scholar 

  147. 147

    C.-H. Choi, S. Heydarkhan-Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C.-J. Kim, J. Biomed. Mat. Res., A 89, 804 (2008).

    Google Scholar 

  148. 148

    T. Lohmüller, Dissertation, University of Heidelberg, 2008.

    Google Scholar 

  149. 149

    B. N. Mbenkum, A. S. Schneider, G. Schütz, C. Xu, G. Richter, P. A. van Aken, G. Majer, and J. P. Spatz, ACS Nano 4, 1805 (2010).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lohmüller, T., Aydin, D., Schwieder, M. et al. Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 6, MR1–MR12 (2011). https://doi.org/10.1116/1.3536839

Download citation