Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Vibrational circular-dichroism spectroscopy of homologous cyclic peptides designed to fold into β helices of opposite chirality

Abstract

Cyclic β-helical peptides have been developed as model structured biomolecules for examining peptide adsorption and conformation on surfaces. As a key prerequisite to circular-dichroism (CD) analysis of these model peptides on surfaces, their conformations and the corresponding vibrational spectra in the 1400-1800 cm−1 range were analyzed by vibrational circular-dichroism (VCD) spectroscopy in solution. The two model peptides (“β Leu and β Val”) were examined in chloroform, where they each fold into a homogeneous well-defined antiparallel double-stranded β-helical species, as determined previously by NMR and electronic CD spectroscopy. Because the β-helical conformations of β Leu and β Val are well characterized, the VCD spectra of these peptides can be unambiguously correlated with their structures. In addition, these two β-helical peptides differ from one another in two key respects that make them uniquely advantageous for CD analysis—first, while their backbone conformations are topologically similar, β Leu and β Val form helices of opposite chiralities; second, the two peptides differ in their sequences, i.e., composition of the side chains attached to the backbone. The observed VCD spectra for β Leu and β Val are roughly mirror images of each other, indicating that the VCD features are dominated by the chirality and conformation of the peptide backbone rather than by the peptide sequence. Accordingly, spectra similarly characteristic of peptide secondary structure can be expected for peptides designed to be structural analogs of β Leu and β Val while incorporating a variety of side chains for studies of surface adsorption from organic and aqueous solvents.

References

  1. 1

    J. D. Andrade and V. Hlady, Adv. Polym. Sci. 79, 1 (1986).

    CAS  Google Scholar 

  2. 2

    I. Lundström, Prog. Colloid Polym. Sci. 70, 76 (1985).

    Article  Google Scholar 

  3. 3

    M. Wahlgren and T. Arnebrant, Trends Biotechnol. 9, 201 (1991).

    Article  CAS  Google Scholar 

  4. 4

    O. Mermut, R. L. York, D. C. Phillips, K. R. McCrea, R. S. Ward, and G. A. Somorjai, BioInterphases 1, 5 (2006).

    Article  Google Scholar 

  5. 5

    D. C. Phillips, R. L. York, O. Mermut, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Phys. Chem. C 111, 255 (2007).

    Article  CAS  Google Scholar 

  6. 6

    T. Weidner, J. S. Apte, L. J. Gamble, and D. G. Castner, Langmuir 26, 3433 (2010).

    Article  CAS  Google Scholar 

  7. 7

    H. Kimura-Suda, D. Y. Petrovykh, M. J. Tarlov, and L. J. Whitman, J. Am. Chem. Soc. 125, 9014 (2003).

    Article  CAS  Google Scholar 

  8. 8

    D. Y. Petrovykh, V. Perez-Dieste, A. Opdahl, H. Kimura-Suda, J. M. Sullivan, M. J. Tarlov, F. J. Himpsel, and L. J. Whitman, J. Am. Chem. Soc. 128, 2 (2006).

    Article  CAS  Google Scholar 

  9. 9

    W. C. Johnson, Proteins 7, 205 (1990).

    Article  CAS  Google Scholar 

  10. 10

    M. P. Williamson and J. P. Waltho, Chem. Soc. Rev. 21, 227 (1992).

    Article  CAS  Google Scholar 

  11. 11

    R. W. Woody, Methods Enzymol. 246, 34 (1995).

    Article  CAS  Google Scholar 

  12. 12

    J. T. Yang, C. S. C. Wu, and H. M. Martinez, Methods Enzymol. 130, 208 (1986).

    Article  CAS  Google Scholar 

  13. 13

    T. D. Clark, M. Sastry, C. Brown, and G. Wagner, Tetrahedron 62, 9533 (2006).

    Article  CAS  Google Scholar 

  14. 14

    M. Sastry, C. Brown, G. Wagner, and T. D. Clark, J. Am. Chem. Soc. 128, 10650 (2006).

    Article  CAS  Google Scholar 

  15. 15

    M. Bokvist, F. Lindstrom, A. Watts, and G. Grobner, J. Mol. Biol. 335, 1039 (2004).

    Article  CAS  Google Scholar 

  16. 16

    B. R. Malcolm, Proc. R. Soc. London, Ser. A 305, 363 (1968).

    Article  CAS  Google Scholar 

  17. 17

    G. Vandenbussche, A. Clercx, M. Clercx, T. Curstedt, J. Johansson, H. Jornvall, and J. M. Ruysschaert, Biochemistry 31, 9169 (1992).

    Article  CAS  Google Scholar 

  18. 18

    D. Verreault, V. Kurz, C. Howell, and P. Koelsch, Rev. Sci. Instrum. 81, 063111 (2010).

    Article  Google Scholar 

  19. 19

    B. Sivaraman, K. P. Fears, and R. A. Latour, Langmuir 25, 3050 (2009).

    Article  CAS  Google Scholar 

  20. 20

    K. P. Fears, B. Sivaraman, G. L. Powell, Y. Wu, and R. A. Latour, Langmuir 25, 9319 (2009).

    Article  CAS  Google Scholar 

  21. 21

    C. R. McMillin and A. G. Walton, J. Colloid Interface Sci. 48, 345 (1974).

    Article  CAS  Google Scholar 

  22. 22

    P. Billsten, M. Wahlgren, T. Arnebrant, J. McGuire, and H. Elwing, J. Colloid Interface Sci. 175, 77 (1995).

    Article  CAS  Google Scholar 

  23. 23

    A. W. P. Vermeer and W. Norde, J. Colloid Interface Sci. 225, 394 (2000).

    Article  CAS  Google Scholar 

  24. 24

    S. L. Burkett and M. J. Read, Langmuir 17, 5059 (2001).

    Article  CAS  Google Scholar 

  25. 25

    M. Shimizu, K. Kazutoshi, H. Morii, K. Mitsui, W. Knoll, and T. Nagamune, Biochem. Biophys. Res. Commun. 310, 606 (2003).

    Article  CAS  Google Scholar 

  26. 26

    A. A. Vertegel, R. W. Siegel, and J. S. Dordick, Langmuir 20, 6800 (2004).

    Article  CAS  Google Scholar 

  27. 27

    M. Lundqvist, P. Nygren, B. H. Jonsson, and K. Broo, Angew. Chem., Int. Ed. 45, 8169 (2006).

    Article  CAS  Google Scholar 

  28. 28

    A. Borics, R. F. Murphy, and S. Lovas, Biopolymers 85, 1 (2007).

    Article  CAS  Google Scholar 

  29. 29

    P. Bour, J. Kim, J. Kapitan, R. P. Hammer, R. Huang, L. Wu, and T. A. Keiderling, Chirality 20, 1104 (2008).

    Article  CAS  Google Scholar 

  30. 30

    J. Hudecová, J. Kapitan, V. Baumruk, R. P. Hammer, T. A. Keiderling, and P. Bour, J. Phys. Chem. A 114, 7642 (2010).

    Article  Google Scholar 

  31. 31

    J. Kim, J. Kapitan, A. Lakhani, P. Bour, and T. A. Keiderling, Theor. Chem. Acc. 119, 81 (2008).

    Article  CAS  Google Scholar 

  32. 32

    P. Xie and M. Diem, J. Am. Chem. Soc. 117, 429 (1995).

    Article  CAS  Google Scholar 

  33. 33

    W. R. Veatch, E. T. Fossel, and E. R. Blout, Biochemistry 13, 5249 (1974).

    Article  CAS  Google Scholar 

  34. 34

    D. Y. Petrovykh, H. Kimura-Suda, L. J. Whitman, and M. J. Tarlov, J. Am. Chem. Soc. 125, 5219 (2003).

    Article  CAS  Google Scholar 

  35. 35

    C. X. Zhao and P. L. Polavarapu, Biospectroscopy 5, 276 (1999).

    Article  CAS  Google Scholar 

  36. 36

    V. M. Naik and S. Krimm, Biophys. J. 49, 1131 (1986).

    Article  CAS  Google Scholar 

  37. 37

    V. M. Naik and S. Krimm, Biophys. J. 49, 1147 (1986).

    Article  CAS  Google Scholar 

  38. 38

    P. L. Polavarapu and C. X. Zhao, Fresenius’ J. Anal. Chem. 366, 727 (2000).

    Article  CAS  Google Scholar 

  39. 39

    C. X. Zhao and P. L. Polavarapu, Biopolymers 62, 336 (2001).

    Article  CAS  Google Scholar 

  40. 40

    C. X. Zhao and P. L. Polavarapu, J. Am. Chem. Soc. 121, 11259 (1999).

    Article  CAS  Google Scholar 

  41. 41

    S. M. Pascal and T. A. Cross, J. Mol. Biol. 226, 1101 (1992).

    Article  CAS  Google Scholar 

  42. 42

    A. S. Arseniev, V. F. Bystrov, V. T. Ivanov, and Y. A. Ovchinnikov, FEBS Lett. 165, 51 (1984).

    Article  Google Scholar 

  43. 43

    V. F. Bystrov and A. S. Arseniev, Tetrahedron 44, 925 (1988).

    Article  CAS  Google Scholar 

  44. 44

    J. L. Kulp and T. D. Clark, Chem.-Eur. J. 15, 11867 (2009).

    Article  CAS  Google Scholar 

  45. 45

    Y. Chen, A. Tucker, and B. A. Wallace, J. Mol. Biol. 264, 757 (1996).

    Article  CAS  Google Scholar 

  46. 46

    L. A. Nafie, Annu. Rev. Phys. Chem. 48, 357 (1997).

    Article  CAS  Google Scholar 

  47. 47

    S. L. Ma, T. B. Freedman, R. K. Dukor, and L. A. Nafie, Appl. Spectrosc. 64, 615 (2010).

    Article  CAS  Google Scholar 

  48. 49

    B. A. Wallace, Q. Rev. Biophys. 42, 317 (2009).

    Article  CAS  Google Scholar 

  49. 50

    M. Bieri, C. Gautier, and T. Burgi, Phys. Chem. Chem. Phys. 9, 671 (2007).

    Article  CAS  Google Scholar 

  50. 51

    H. Yao, N. Nishida, and K. Kimura, Chem. Phys. 368, 28 (2010).

    Article  CAS  Google Scholar 

  51. 52

    M. Osawa, Bull. Chem. Soc. Jpn. 70, 2861 (1997).

    Article  CAS  Google Scholar 

  52. 53

    T. R. Jensen, R. P. Van Duyne, S. A. Johnson, and V. A. Maroni, Appl. Spectrosc. 54, 371 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Clark.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kulp, J.L., Owrutsky, J.C., Petrovykh, D.Y. et al. Vibrational circular-dichroism spectroscopy of homologous cyclic peptides designed to fold into β helices of opposite chirality. Biointerphases 6, 1–7 (2011). https://doi.org/10.1116/1.3548075

Download citation