Skip to main content

Journal for Biophysical Chemistry

Anodic TiO2 nanotube layers electrochemically filled with MoO3 and their antimicrobial properties

Abstract

In the present work, the authors produce a Ti surface with a TiO2 nanotube coating and investigate the electrochemical filling of these layers with MoO3. The authors demonstrate that using a potential cycling technique, a homogenous MoO3 coating can be generated. Controllable and variable coating thicknesses are achieved by a variation of the number of cycles. Thicknesses from a few nanometers to complete filling of the nanotube layers can be obtained. A thermal treatment is used to convert the as-deposited amorphous MoOx phases into MoO3. These MoO3 loaded nanotube layers were then investigated regarding their antimicrobial properties using strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The authors found that the combination of crystalline MoO3 on TiO2 nanotubes shows excellent antimicrobial properties.

References

  1. L. A. Herwaldt, J. J. Cullen, D. Scholz, P. French, M. B. Zimmerman, M. A. Pfaller, R. P. Wenzel, and T. M. Perl, J. Soc. Hosp. Epidemiologists Am. 27, 1291 (2006).

    Google Scholar 

  2. D. J. Ecker and K. C. Carroll, ASM News 71, 576 (2005).

    Google Scholar 

  3. S. J. Dancer, J. Hosp. Infect. 56, 10 (2004).

    Article  CAS  Google Scholar 

  4. K. Page, M. Wilson, and I. P. Parkin, J. Mater. Chem. 19, 3819 (2009).

    Article  CAS  Google Scholar 

  5. R. G. Chapman, E. Ostuni, M. N. Liang, G. Meluleni, E. Kim, L. Yan, G. Pier, H. S. Warren, and G. M. Whitesides, Langmuir 17, 1225 (2001).

    Article  CAS  Google Scholar 

  6. R. Hauert, Diamond Relat. Mater. 12, 583 (2003).

    Article  CAS  Google Scholar 

  7. W. Barthlott and C. Neinhuis, Planta 202, 1 (1997).

    Article  CAS  Google Scholar 

  8. A. Okada, T. Nikaido, M. Ikeda, K. Okada, J. Yamauchi, R. M. Foxton, H. Sawada, J. Tagami, and K. Matini, Dent. Mater. J. 27, 256 (2008).

    Google Scholar 

  9. S. F. Rose, S. Okere, G. W. Hanlon, A. W. Lloyd, and A. L. Lewis, J. Mater. Sci.: Mater. Med. 16, 1003 (2005).

    Article  CAS  Google Scholar 

  10. A. M. Klibanov, J. Mater. Chem. 17, 2479 (2007).

    Article  CAS  Google Scholar 

  11. R. O. Darouiche, M. D. Mansouri, P. V. Gawande, and S. Madhyastha, J. Antimicrob. Chemother. 64, 88 (2009).

    Article  CAS  Google Scholar 

  12. S. Silver, FEMS Microbiol. Rev. 27, 341 (2003).

    Article  CAS  Google Scholar 

  13. U. Samuel and J. P. Guggenbichler, Int. J. Antimicrob. Agents 23, 75 (2004).

    Article  Google Scholar 

  14. R. E. Burrell, Ostomy Wound Manage 49, 19 (2003).

    Google Scholar 

  15. M. J. Domek, M. W. LeChevallier, S. C. Cameron, and G. A. McFeters, Appl. Environ. Microbiol. 48, 289 (1984).

    CAS  Google Scholar 

  16. Z. Huang, P. C. Maness, D. M. Blake, E. J. Wolfrum, S. L. Smolinski, and W. A. Jacoby, J. Photochem. Photobiol., A 130, 163 (2000).

    Article  CAS  Google Scholar 

  17. B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo, Burns 33, 139 (2007).

    Article  Google Scholar 

  18. S. L. Percival, J. Ind. Microbiol. Biotechnol. 23, 112 (1999).

    Article  CAS  Google Scholar 

  19. Y. Meng and Z. Xiong, Key Eng. Mater. 368-372, 1516 (2008).

    Article  CAS  Google Scholar 

  20. J. P. Guggenbichler, N. Eberhardt, H. P. Martinz, and H. Wildner, Patent No. WO00,200,805,870,7A2 (filed November 13, 2007, published May 22, 2008).

    Google Scholar 

  21. W. F. Linke, Solubilities of Inorganic and Metal/Organic Compounds (American Chemical Society, Washington, D.C., 1958), Vol. II, p. 573.

    Google Scholar 

  22. V. Zwilling, M. Aucouturier, and E. Darque-Ceretti, Electrochim. Acta 45, 921 (1999).

    Article  CAS  Google Scholar 

  23. R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Solid-State Lett. 6, B12 (2003).

    Article  CAS  Google Scholar 

  24. J. M. Macák, H. Tsuchiya, and P. Schmuki, Angew. Chem., Int. Ed. 44, 2100 (2005).

    Article  Google Scholar 

  25. S. Bauer, S. Kleber, and P. Schmuki, Electrochem. Commun. 8, 1321 (2006).

    Article  CAS  Google Scholar 

  26. J. Park, S. Bauer, K. von der Mark, and P. Schmuki, Nano Lett. 7, 1686 (2007).

    Article  CAS  Google Scholar 

  27. S. Bauer, J. Park, K. d. Mark, and P. Schmuki, Integr. Biol. 1, 525 (2009).

    Article  CAS  Google Scholar 

  28. J. Park, S. Bauer, K. A. Schlegel, F. W. Neukam, K. von der Mark, and P. Schmuki, Small 5, 666 (2009).

    Article  CAS  Google Scholar 

  29. C. v. Wilmowsky, S. Bauer, R. Lutz, M. Meisel, F. W. Neukam, T. Toyoshima, P. Schmuki, F. W. Neukam, and K. A. Schlegel, J. Biomed. Mater. Res., Part B: Appl. Biomater. 89, 171 (2008).

    Google Scholar 

  30. M. Anwar and C. A. Hogarth, Phys. Status Solidi A 109, 469 (1988).

    Article  CAS  Google Scholar 

  31. N. Miyata, T. Suzuki, and R. Ohyama, Thin Solid Films 218-222, 281 (1996).

    Google Scholar 

  32. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier Science, Amsterdam, Netherlands, 1995), p. 151.

    Google Scholar 

  33. F. F. Ferreira, T. G. Souza Cruz, M. C. A. Fantini, M. H. Tabacniks, S. C. de Castro, J. Morais, A. de Siervo, R. Landers, and A. Gorenstein, Solid State Ionics 357-363, 136 (2000).

    Google Scholar 

  34. Y. Zhang, S. Kuai, Z. Wang, and X. Hu, Appl. Surf. Sci. 165, 56 (2000).

    Article  CAS  Google Scholar 

  35. A. Abdellaoui, G. Leveque, A. Donnadieu, A. Bath, and B. Bouchikhi, Thin Solid Films 304, 39 (1997).

    Article  CAS  Google Scholar 

  36. T. Maruyama and T. Kanagawa, J. Electrochem. Soc. 142, 1644 (1995).

    Article  CAS  Google Scholar 

  37. A. Guerfi and L. H. Dao, J. Electrochem. Soc. 136, 2435 (1989).

    Article  CAS  Google Scholar 

  38. C. Julien, A. Khelfa, O. M. Hussain, and G. A. Nazri, J. Cryst. Growth 156, 235 (1995).

    Article  CAS  Google Scholar 

  39. C. Julien, B. Yebka, and G. A. Nazri, Mater. Sci. Eng., B 38, 65 (1996).

    Article  Google Scholar 

  40. E. I. Altman, T. Droubay, and S. A. Chambers, Thin Solid Films 414, 205 (2002).

    Article  CAS  Google Scholar 

  41. P. Roy, S. Berger, and P. Schmuki, Angew. Chem., Int. Ed., DOI: 10.1002/anie.201001374 (2011).

    Google Scholar 

  42. National Institute of Standards and Technology, X-Ray Photoelectron Database, Web Version 3.2, 2000.

    Google Scholar 

  43. T. M. McEvoy, K. J. Stevenson, J. T. Hupp, and X. Dang, Langmuir 19, 4316 (2003).

    Article  CAS  Google Scholar 

  44. J. P. Guggenbichler, Antibiotika Monitor 20, 52 (2004).

    Google Scholar 

  45. J. P. Guggenbichler, Mater. Sci. Eng. Tech. 34, 1145 (2003).

    CAS  Google Scholar 

  46. J. C. Ireland, P. Klostermann, E. W. Rice, and R. M. Clark, Appl. Environ. Microbiol. 59, 1668 (1993).

    CAS  Google Scholar 

  47. P.-C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, Appl. Environ. Microbiol. 65, 4094 (1999).

    CAS  Google Scholar 

  48. Y. C. Nah, I. Paramasivam, R. Hahn, N. K. Shrestha, and P. Schmuki, Nanotechnology 21, 105704 (2010).

    Article  Google Scholar 

  49. L. B. Levy and P. B. DeGroot, J. Catal. 76, 385 (1982).

    Article  CAS  Google Scholar 

  50. H. Böhnke, Ph.D. Doctorate thesis, TU Darmstadt, 2000.

    Google Scholar 

  51. S. Endres, Ph.D. Doctorate thesis, TU Darmstadt, 2009.

    Google Scholar 

  52. P. Venkataramana, Radiochem. Radioanal. Lett. 53, 189 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, K., Bauer, S., Gutbrod, K. et al. Anodic TiO2 nanotube layers electrochemically filled with MoO3 and their antimicrobial properties. Biointerphases 6, 16–21 (2011). https://doi.org/10.1116/1.3566544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3566544