Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Microstructured platforms to study nanotube-mediated long-distance cell-to-cell connections

Abstract

Recently, numerous innovative approaches have attempted to overcome the shortcomings of standard tissue culturing by providing custom-tailored substrates with superior features. In particular, tunable surface chemistry and topographical micro- and nanostructuring have been highlighted as potent effectors to control cell behavior. Apart from tissue engineering and the development of biosensors and diagnostic assays, the need for custom-tailored platform systems is accentuated by a variety of complex and poorly characterized biological processes. One of these processes is cell-to-cell communication mediated by tunneling nanotubes (TNTs), the reliable statistical analysis of which is consistently hampered by critical dependencies on various experimental factors, such as cell singularization, spacing, and alignment. Here, the authors developed a microstructured platform based on a combination of controlled surface chemistry along with topographic parameters, which permits the controllable attachment of different cell types to complementary patterns of cell attracting/nonattracting surface domains and—as a consequence—represents a standardized analysis tool to approach a wide range of biological questions. Apart from the technical complementation of mainstream applications, the developed surfaces could successfully be used to statistically determine TNT-based intercellular connection processes as they are occurring in standard as well as primary cell cultures.

References

  1. 1

    A. Curtis and C. Wilkinson, Biomaterials 18, 1573 (1997).

    Article  CAS  Google Scholar 

  2. 2

    D. Hoffman-Kim, J. A. Mitchel, and R. V. Bellamkonda, Annu. Rev. Biomed. Eng. 12, 203 (2010).

    Article  CAS  Google Scholar 

  3. 3

    A. S. G. Curtis and C. D. W. Wilkinson, J. Biomater. Sci., Polym. Ed. 9, 1313 (1998).

    Article  CAS  Google Scholar 

  4. 4

    B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).

    Article  CAS  Google Scholar 

  5. 5

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    Article  CAS  Google Scholar 

  6. 6

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Biotechnol. Prog. 14, 3 (1998).

    Google Scholar 

  7. 7

    K. Tashiro, G. C. Sephel, B. Weeks, M. Sasaki, G. R. Martin, H. K. Kleinman, and Y. Yamada, J. Biol. Chem. 264, 27 (1989).

    Google Scholar 

  8. 8

    Y. Wu, Q. Zheng, J. Du, Y. Song, B. Wu, and X. Guo, J. Huazhong Univ. Sci. Technolog. Med. Sci. 26, 594 (2006).

    CAS  Google Scholar 

  9. 9

    C. L. Klein, M. Scholl, and A. Maelicke, J. Mater. Sci. 10, 12 (1999).

    Google Scholar 

  10. 10

    D. A. Hutt, E. Cooper, L. Parker, G. J. Leggett, and T. L. Parker, Langmuir 12, 5494 (1996).

    Article  CAS  Google Scholar 

  11. 11

    D. Falconnet, G. Csucs, H. M. Grandin, and M. Textor, Biomaterials 27, 3044 (2006).

    Article  CAS  Google Scholar 

  12. 12

    L. Kam, W. Shain, J. N. Turner, and R. Bizios, Biomaterials 22, 1049 (2001).

    Article  CAS  Google Scholar 

  13. 13

    C. D. James et al., IEEE Trans. Biomed. Eng. 47, 1 (2000).

    Article  Google Scholar 

  14. 14

    P. Fromherz and H. Schaden, Eur. J. Neurosci. 6, 1500 (1994).

    Article  CAS  Google Scholar 

  15. 15

    Y. W. Fan, F. Z. Cui, S. P. Hou, Q. Y. Xu, L. N. Chen, and I.-S. Lee, J. Neurosci. Methods 120, 17 (2002).

    Article  CAS  Google Scholar 

  16. 16

    A. Greenbaum, S. Anava, A. Ayali, M. Shein, M. David-Pur, E. Ben-Jacob, and Y. Hanein, J. Neurosci. Methods 182, 219 (2009).

    Article  Google Scholar 

  17. 17

    P. Gong and D. W. Grainger, Methods Mol. Biol. 381, 59 (2007).

    Article  CAS  Google Scholar 

  18. 18

    A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes, Science 303, 1007 (2004).

    Article  CAS  Google Scholar 

  19. 19

    Cell-Cell Channels, edited by F. Baluska, D. Volkmann, and P. W. Barlow (Springer, New York, 2006), pp. 200–207.

    Google Scholar 

  20. 20

    S. Gurke, J. F. V. Barroso, and H. H. Gerdes, Histochem. Cell Biol. 129, 539 (2008).

    Article  CAS  Google Scholar 

  21. 21

    J. Hurtig, D. T. Chiu, and B. Önfelt, Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2, 260 (2010).

    Article  CAS  Google Scholar 

  22. 22

    L. F. Agnati, D. Guidolin, M. Guescini, S. Genedani, and K. Fuxe, Brain Res. Rev. 64, 137 (2010).

    Article  Google Scholar 

  23. 23

    A. Rustom, Ann. N.Y. Acad. Sci. 1178, 129 (2009).

    Article  CAS  Google Scholar 

  24. 24

    F. Hook, C. Larsson, and C. Fant, Encyclopedia of Surface and Colloid Science (CRC, Boca Raton, 2002), pp. 774–791.

    Google Scholar 

  25. 25

    L. A. Greene and A. S. Tischler, Proc. Natl. Acad. Sci. U.S.A. 73, 7 (1976).

    Article  Google Scholar 

  26. 26

    A. Rustom, D. Gerlich, R. Rudolf, C. Heinemann, R. Eils, and H. H. Gerdes, BioTechniques 28, 4 (2000).

    Google Scholar 

  27. 27

    G. Banker and K. Goslin, Nature (London) 336, 6195 (1988).

    Article  Google Scholar 

  28. 29

    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 5317 (1997).

    Google Scholar 

  29. 30

    P. Fromherz, ChemPhysChem 3, 276 (2002).

    Article  CAS  Google Scholar 

  30. 31

    K. Gousset et al., Nat. Cell Biol. 11, 328 (2009).

    Article  CAS  Google Scholar 

  31. 33

    E. Hodneland, A. Lundervold, S. Gurke, X. C. Tai, A. Rustom, and H. H. Gerdes, Cytometry, Part A 69, 9 (2006).

    Google Scholar 

  32. 34

    N. V. Bukoreshtliev, X. Wang, E. Hodneland, S. Gurke, J. F. V. Barroso, and H. H. Gerdes, FEBS Lett. 583, 9 (2009).

    Article  Google Scholar 

  33. 36

    S. Gurke, J. F. V. Barroso, E. Hodneland, N. V. Bukoreshtliev, O. Schlicker, and H. H. Gerdes, Exp. Cell Res. 314, 3669 (2008).

    Article  CAS  Google Scholar 

  34. 37

    M. Koyanagi, R. P. Brandes, J. Haendeler, A. M. Zeiher, and S. Dimmeler, Circulation 112, 17 (2005).

    Google Scholar 

  35. 38

    S. Sowinski et al., Nat. Cell Biol. 10, 2 (2008).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abel, M.P., Riese, S.R., Schlicker, O. et al. Microstructured platforms to study nanotube-mediated long-distance cell-to-cell connections. Biointerphases 6, 22–31 (2011). https://doi.org/10.1116/1.3567416

Download citation